2021
Regulation of RNA polymerase II activity is essential for terminal erythroid maturation
Murphy ZC, Murphy K, Myers J, Getman M, Couch T, Schulz VP, Lezon-Geyda K, Palumbo C, Yan H, Mohandas N, Gallagher PG, Steiner LA. Regulation of RNA polymerase II activity is essential for terminal erythroid maturation. Blood 2021, 138: 1740-1756. PMID: 34075391, PMCID: PMC8569412, DOI: 10.1182/blood.2020009903.Peer-Reviewed Original ResearchMeSH KeywordsCell LineChromatinErythroblastsErythroid CellsErythropoiesisGene Expression Regulation, DevelopmentalHistonesHumansRNA Polymerase IITranscription, GeneticConceptsRNA polymerase IIRNA polymerase II activityTerminal erythroid maturationPolymerase II activityPolymerase IIErythroid maturationHuman erythroblastsGene expressionTerminal maturationII activityStage-specific regulationHistone posttranslational modificationsTransposase-accessible chromatinErythroid-specific genesAccumulation of heterochromatinHigh-throughput sequencingLevel of transcriptionLate-stage erythroblastsEssential biologic processesAccessible chromatinHistone marksTranscription elongationChromatin structureTranscriptional repressionChromatin immunoprecipitation
2015
Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors
Dulmovits BM, Appiah-Kubi AO, Papoin J, Hale J, He M, Al-Abed Y, Didier S, Gould M, Husain-Krautter S, Singh SA, Chan KW, Vlachos A, Allen SL, Taylor N, Marambaud P, An X, Gallagher PG, Mohandas N, Lipton JM, Liu JM, Blanc L. Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors. Blood 2015, 127: 1481-1492. PMID: 26679864, PMCID: PMC4797024, DOI: 10.1182/blood-2015-09-667923.Peer-Reviewed Original ResearchMeSH KeywordsAdultAnemia, Sickle CellBeta-GlobinsCarrier ProteinsErythroid Precursor CellsErythropoiesisFetal HemoglobinGamma-GlobinsGene Expression Regulation, DevelopmentalGenetic VectorsHematopoietic Stem CellsHistone DemethylasesHumansIkaros Transcription FactorKruppel-Like Transcription FactorsLentivirusMultiple MyelomaNeoplasm ProteinsNuclear ProteinsProteasome Endopeptidase ComplexRepressor ProteinsRNA InterferenceRNA, Small InterferingSOXD Transcription FactorsThalidomideTranscription, GeneticConceptsSickle cell anemiaCell anemiaΓ-globinThird-generation immunomodulatory drugAdult human erythroblastsMultiple myeloma patientsHematopoietic progenitorsΓ-globin levelsΓ-globin repressionCurrent therapeutic strategiesErythroid differentiation programFetal hemoglobinAdult hematopoietic progenitorsPomalidomide treatmentImmunomodulatory drugsMyeloma patientsTranscriptional reprogrammingFetal hemoglobin productionTranscription networksTherapeutic strategiesDifferentiation programPomalidomideHuman erythroblastsΒ-hemoglobinopathiesGenetic ablation
2012
Teleost growth factor independence (gfi) genes differentially regulate successive waves of hematopoiesis
Cooney JD, Hildick-Smith GJ, Shafizadeh E, McBride PF, Carroll KJ, Anderson H, Shaw GC, Tamplin OJ, Branco DS, Dalton AJ, Shah DI, Wong C, Gallagher PG, Zon LI, North TE, Paw BH. Teleost growth factor independence (gfi) genes differentially regulate successive waves of hematopoiesis. Developmental Biology 2012, 373: 431-441. PMID: 22960038, PMCID: PMC3532562, DOI: 10.1016/j.ydbio.2012.08.015.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCloning, MolecularConserved SequenceDNA-Binding ProteinsEmbryo, NonmammalianEpistasis, GeneticErythropoiesisEvolution, MolecularGene Expression Regulation, DevelopmentalHematopoiesisHematopoietic Stem CellsHematopoietic SystemModels, BiologicalMolecular Sequence DataZebrafishZebrafish ProteinsConceptsHematopoietic stem cellsTranscription factorsDefinitive hematopoiesisRUNX-1Hematopoietic stem/progenitor cell developmentKey hematopoietic transcription factorsC-MybDefinitive hematopoietic progenitorsHematopoietic transcription factorsProgenitor cell developmentLineage specificationPrimitive hematopoiesisGfi1aaEpistatic relationshipErythroid developmentTranscriptional programsGFI1BHematopoietic lineagesFunctional analysisCritical regulatorCell developmentZebrafishHematopoietic progenitorsDistinct rolesPrimitive progenitorsAltered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment
Home P, Saha B, Ray S, Dutta D, Gunewardena S, Yoo B, Pal A, Vivian JL, Larson M, Petroff M, Gallagher PG, Schulz VP, White KL, Golos TG, Behr B, Paul S. Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 7362-7367. PMID: 22529382, PMCID: PMC3358889, DOI: 10.1073/pnas.1201595109.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlastocystBlastocyst Inner Cell MassBlastomeresBlotting, WesternCattleCDX2 Transcription FactorCell LineageCell NucleusCells, CulturedDNA-Binding ProteinsEmbryonic Stem CellsGATA3 Transcription FactorGene Expression Regulation, DevelopmentalGreen Fluorescent ProteinsHEK293 CellsHomeodomain ProteinsHumansMacaca mulattaMiceMice, TransgenicMuscle ProteinsRatsReverse Transcriptase Polymerase Chain ReactionRNA InterferenceTEA Domain Transcription FactorsTranscription FactorsConceptsInner cell massTranscriptional programsICM lineagesSubcellular localizationNuclear localizationInner blastomeresCell fate specificationSpecific transcriptional programsCell lineage commitmentAltered subcellular localizationTranscription factor TEAD4Preimplantation mouse embryosFate specificationLineage commitmentTarget genesMouse embryosCell lineagesTEAD4LineagesBlastomeresBlastocyst formationCell massDifferential functionGenesLocalization
2011
Single-lineage transcriptome analysis reveals key regulatory pathways in primitive erythroid progenitors in the mouse embryo
Isern J, He Z, Fraser ST, Nowotschin S, Ferrer-Vaquer A, Moore R, Hadjantonakis AK, Schulz V, Tuck D, Gallagher PG, Baron MH. Single-lineage transcriptome analysis reveals key regulatory pathways in primitive erythroid progenitors in the mouse embryo. Blood 2011, 117: 4924-4934. PMID: 21263157, PMCID: PMC3100699, DOI: 10.1182/blood-2010-10-313676.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCell LineageCytokinesDNA PrimersEpsilon-GlobinsErythroid Precursor CellsErythropoiesisFemaleGene Expression ProfilingGene Expression Regulation, DevelopmentalGene Regulatory NetworksGlycolysisGreen Fluorescent ProteinsGrowth SubstancesMaleMiceMice, Inbred ICRMice, TransgenicOxygenPregnancyRecombinant Fusion ProteinsRNA, MessengerSignal TransductionConceptsPrimitive erythroid progenitorsMouse embryosErythroid progenitorsGlobal expression profilesEmbryonic day 7.5Critical regulatory factorKey regulatory pathwaysOnset of circulationFirst transcriptomeRemarkable proliferative capacityTranscript diversityTransgenic reporterTranscriptome analysisFirst cell typeRegulatory pathwaysHematopoietic lineagesExpression profilesRegulatory factorsCell typesDay 7.5EmbryosProgenitorsYolk sacBlood progenitorsGlycolytic profile
2008
Failure of Terminal Erythroid Differentiation in EKLF-Deficient Mice Is Associated with Cell Cycle Perturbation and Reduced Expression of E2F2
Pilon AM, Arcasoy MO, Dressman HK, Vayda SE, Maksimova YD, Sangerman JI, Gallagher PG, Bodine DM. Failure of Terminal Erythroid Differentiation in EKLF-Deficient Mice Is Associated with Cell Cycle Perturbation and Reduced Expression of E2F2. Molecular And Cellular Biology 2008, 28: 7394-7401. PMID: 18852285, PMCID: PMC2593440, DOI: 10.1128/mcb.01087-08.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell CycleCell DifferentiationE2F2 Transcription FactorEmbryo, MammalianErythropoiesisGene Expression ProfilingGene Expression Regulation, DevelopmentalGene Regulatory NetworksKruppel-Like Transcription FactorsLiverMiceMice, KnockoutOligonucleotide Array Sequence AnalysisPromoter Regions, GeneticStem CellsTranscription, GeneticConceptsErythroid Krüppel-like factorTerminal erythroid differentiationEarly erythroid progenitor cellsErythroid progenitor cellsErythroid differentiationChromatin modifiersProgenitor cellsKrüppel-like transcription factorsNetwork of genesCell cycle regulationChromatin immunoprecipitation analysisKrüppel-like factorCell cycle progressionFailure of erythropoiesisS phase transitionEarly progenitor cellsTranscriptional activatorCycle regulationTranscriptional profilingTranscription factorsTarget genesImmunoprecipitation analysisDNase IErythroid cellsCycle progression
1998
Substitution of the Human β-Spectrin Promoter for the Human Aγ-Globin Promoter Prevents Silencing of a Linked Human β-Globin Gene in Transgenic Mice
Sabatino D, Cline A, Gallagher P, Garrett L, Stamatoyannopoulos G, Forget B, Bodine D. Substitution of the Human β-Spectrin Promoter for the Human Aγ-Globin Promoter Prevents Silencing of a Linked Human β-Globin Gene in Transgenic Mice. Molecular And Cellular Biology 1998, 18: 6634-6640. PMID: 9774678, PMCID: PMC109248, DOI: 10.1128/mcb.18.11.6634.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCosmidsErythropoiesisFluorescent Antibody TechniqueGene Expression Regulation, DevelopmentalGlobinsHumansLiverLocus Control RegionMiceMice, TransgenicMicroscopy, FluorescencePromoter Regions, GeneticRibonucleasesRNA, MessengerSpectrinTransgenes