2019
Aberrant splicing contributes to severe α-spectrin-linked congenital hemolytic anemia
Gallagher PG, Maksimova Y, Lezon-Geyda K, Newburger PE, Medeiros D, Hanson RD, Rothman J, Israels S, Wall DA, Sidonio RF, Sieff C, Gowans LK, Mittal N, Rivera-Santiago R, Speicher DW, Baserga SJ, Schulz VP. Aberrant splicing contributes to severe α-spectrin-linked congenital hemolytic anemia. Journal Of Clinical Investigation 2019, 129: 2878-2887. PMID: 31038472, PMCID: PMC6597203, DOI: 10.1172/jci127195.Peer-Reviewed Original ResearchConceptsRecessive hereditary spherocytosisSplice acceptor siteHuman genetic diseasesMRNA stability studiesAberrant splicing contributesSplicing contributesWhole-genome sequencingSplicing analysisHereditary pyropoikilocytosisTermination codonNull allelesGenome sequencingWhole-exome sequencingBranch pointsNumerous mutationsGenetic diseasesLinkage disequilibriumMRNA transcriptsΑ-spectrinMinigene studiesAcceptor sitesMutationsExome sequencingNew targets
2018
Severe nondominant hereditary spherocytosis in an infant with coinheritance of three rare alpha‐spectrin gene defects
Bhatt N, Loew JM, Gallagher P, Mittal N. Severe nondominant hereditary spherocytosis in an infant with coinheritance of three rare alpha‐spectrin gene defects. Pediatric Blood & Cancer 2018, 66: e27480. PMID: 30255572, DOI: 10.1002/pbc.27480.Peer-Reviewed Original Research
2014
Severe nondominant hereditary spherocytosis due to uniparental isodisomy at the SPTA1 locus
Bogardus H, Schulz VP, Maksimova Y, Miller BA, Li P, Forget BG, Gallagher PG. Severe nondominant hereditary spherocytosis due to uniparental isodisomy at the SPTA1 locus. Haematologica 2014, 99: e168-e170. PMID: 24895341, PMCID: PMC4562552, DOI: 10.3324/haematol.2014.110312.Peer-Reviewed Original ResearchProbing large conformational rearrangements in wild-type and mutant spectrin using structural mass spectrometry
Sriswasdi S, Harper SL, Tang HY, Gallagher PG, Speicher DW. Probing large conformational rearrangements in wild-type and mutant spectrin using structural mass spectrometry. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 1801-1806. PMID: 24453214, PMCID: PMC3918770, DOI: 10.1073/pnas.1317620111.Peer-Reviewed Original ResearchConceptsMass spectrometryConformational changesStructural mass spectrometryLarge conformational rearrangementsCell membraneMembrane integrityMass spectrometry characterizationRed cell spectrinUnidentified mechanistic insightCell membrane integrityProtein complexesMacromolecular complexesDiverse functionsCell shapeBiological processesFlexible proteinsConformational rearrangementsDimer-tetramer equilibriumRed cell membraneOpen dimersCell typesΑ-spectrinKey mechanistic roleTetramerization siteBiophysical data
2013
The common hereditary elliptocytosis-associated α-spectrin L260P mutation perturbs erythrocyte membranes by stabilizing spectrin in the closed dimer conformation
Harper SL, Sriswasdi S, Tang HY, Gaetani M, Gallagher PG, Speicher DW. The common hereditary elliptocytosis-associated α-spectrin L260P mutation perturbs erythrocyte membranes by stabilizing spectrin in the closed dimer conformation. Blood 2013, 122: 3045-3053. PMID: 23974198, PMCID: PMC3811177, DOI: 10.1182/blood-2013-02-487702.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBinding SitesCross-Linking ReagentsElliptocytosis, HereditaryErythrocyte MembraneHumansModels, MolecularMolecular Sequence DataMutationProtein BindingProtein MultimerizationProtein StabilityProtein Structure, SecondaryProtein Structure, TertiaryRecombinant ProteinsSpectrinConceptsHereditary elliptocytosisMembrane destabilizationLarge conformational rearrangementsGel filtration analysisMembrane proteinsTetramer assemblyHereditary pyropoikilocytosisBiophysical analysisCommon hereditary elliptocytosisConformational rearrangementsDimer conformationHelical contentTetramerization siteFiltration analysisSpectrin tetramersNovel mechanismUnknown mechanismMutationsBinding assaysSpectrinChemical crosslinkingErythrocyte shapeTetramerErythrocyte membranesMembrane
2010
A Comprehensive Model of the Spectrin Divalent Tetramer Binding Region Deduced Using Homology Modeling and Chemical Cross-linking of a Mini-spectrin [S] *
Li D, Harper SL, Tang HY, Maksimova Y, Gallagher PG, Speicher DW. A Comprehensive Model of the Spectrin Divalent Tetramer Binding Region Deduced Using Homology Modeling and Chemical Cross-linking of a Mini-spectrin [S] *. Journal Of Biological Chemistry 2010, 285: 29535-29545. PMID: 20610390, PMCID: PMC2937985, DOI: 10.1074/jbc.m110.145573.Peer-Reviewed Original ResearchConceptsHelix faceRed cell membrane stabilityHomology modelingNon-homologous tailsCell membrane stabilityC-terminal tailWild-type bindingMedium-resolution structureSubtle conformational changesTetramer complexSpectrin tetramer formationChemical Cross-LinkingMembrane skeletonRecombinant domainsTetramer formationA Fused α-β “Mini-spectrin” Mimics the Intact Erythrocyte Spectrin Head-to-head Tetramer*
Harper SL, Li D, Maksimova Y, Gallagher PG, Speicher DW. A Fused α-β “Mini-spectrin” Mimics the Intact Erythrocyte Spectrin Head-to-head Tetramer*. Journal Of Biological Chemistry 2010, 285: 11003-11012. PMID: 20139081, PMCID: PMC2856305, DOI: 10.1074/jbc.m109.083048.Peer-Reviewed Original ResearchConceptsN-terminal regionFull-length dimerC-terminal regionRed cell membrane integrityGel filtration analysisLateral associationCell membrane integrityOligomeric stateFusion proteinAlpha-spectrinTetramer formationBeta subunitC-terminalN-terminalConformational statesFunctional studiesFiltration analysisMembrane integritySpectrin heterodimersTerminal peptidesDimer interactionsDistinct groupsSpectrinSpectrin dimersProtein
2009
Canine elliptocytosis due to a mutant β‐spectrin
Di Terlizzi R, Gallagher PG, Mohandas N, Steiner LA, Dolce KS, Guo X, Wilkerson MJ, Stockham SL. Canine elliptocytosis due to a mutant β‐spectrin. Veterinary Clinical Pathology 2009, 38: 52-58. PMID: 19228356, DOI: 10.1111/j.1939-165x.2008.00092.x.Peer-Reviewed Original Research
2008
An insulator with barrier-element activity promotes α-spectrin gene expression in erythroid cells
Gallagher PG, Nilson DG, Steiner LA, Maksimova YD, Lin JY, Bodine DM. An insulator with barrier-element activity promotes α-spectrin gene expression in erythroid cells. Blood 2008, 113: 1547-1554. PMID: 19008453, PMCID: PMC2644083, DOI: 10.1182/blood-2008-06-164954.Peer-Reviewed Original ResearchConceptsIntron 1Erythroid cellsErythrocyte membrane protein genesExon 1Chicken HS4 insulatorGamma-globin proteinChromatin immunoprecipitation assaysEarly erythroid developmentMembrane protein geneAlpha-spectrin geneTissue-specific expressionMembrane biogenesisErythroid developmentGlobin genesHS4 insulatorImmunoprecipitation assaysProtein geneReporter geneGene expressionDevelopmental stagesGenesPromoterAdult erythrocytesExpressionSpectrinNonsense mutations of the α-spectrin gene in hereditary pyropoikilocytosis
Tolpinrud W, Maksimova YD, Forget BG, Gallagher PG. Nonsense mutations of the α-spectrin gene in hereditary pyropoikilocytosis. Haematologica 2008, 93: 1752-1754. PMID: 18815189, DOI: 10.3324/haematol.13639.Peer-Reviewed Original ResearchStructural and functional effects of hereditary hemolytic anemia-associated point mutations in the alpha spectrin tetramer site
Gaetani M, Mootien S, Harper S, Gallagher PG, Speicher DW. Structural and functional effects of hereditary hemolytic anemia-associated point mutations in the alpha spectrin tetramer site. Blood 2008, 111: 5712-5720. PMID: 18218854, PMCID: PMC2424163, DOI: 10.1182/blood-2007-11-122457.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnemia, Hemolytic, CongenitalBinding SitesCalorimetry, Differential ScanningCircular DichroismEntropyErythrocytesGene ExpressionGenotypeHumansMolecular Sequence DataPhenotypePoint MutationProtein BindingRecombinant ProteinsSpectrinSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationStructure-Activity Relationship
2006
Pathogenic proline mutation in the linker between spectrin repeats: disease caused by spectrin unfolding
Johnson CP, Gaetani M, Ortiz V, Bhasin N, Harper S, Gallagher PG, Speicher DW, Discher DE. Pathogenic proline mutation in the linker between spectrin repeats: disease caused by spectrin unfolding. Blood 2006, 109: 3538-3543. PMID: 17192394, PMCID: PMC1852230, DOI: 10.1182/blood-2006-07-038588.Peer-Reviewed Original Research
2005
A novel splicing mutation of the α-spectrin gene in the original hereditary pyropoikilocytosis kindred
Costa DB, Lozovatsky L, Gallagher PG, Forget BG. A novel splicing mutation of the α-spectrin gene in the original hereditary pyropoikilocytosis kindred. Blood 2005, 106: 4367-4369. PMID: 16150946, PMCID: PMC1895230, DOI: 10.1182/blood-2005-05-1813.Peer-Reviewed Original ResearchConceptsFrame premature termination codonsRed blood cell membrane skeletonCell membrane skeletonΑ-spectrin geneHereditary pyropoikilocytosisPremature termination codonConsensus splice sitesTissue culture cellsNovel splicing mutationMembrane skeletonIntronic fragmentTermination codonGene transcriptsAlpha-spectrinAbnormal splicingSplice siteStructural variantsGene transferMolecular defectsSplicing mutationCulture cellsAllelesExon 22TranscriptsMutations
2004
Sequences Downstream of the Erythroid Promoter Are Required for High Level Expression of the Human α-Spectrin Gene*
Wong EY, Lin J, Forget BG, Bodine DM, Gallagher PG. Sequences Downstream of the Erythroid Promoter Are Required for High Level Expression of the Human α-Spectrin Gene*. Journal Of Biological Chemistry 2004, 279: 55024-55033. PMID: 15456760, DOI: 10.1074/jbc.m408886200.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBinding SitesCell DifferentiationCell MembraneCell NucleusChromatin ImmunoprecipitationCREB-Binding ProteinDeoxyribonuclease IDNADNA PrimersDNA-Binding ProteinsDNA, ComplementaryErythrocytesErythroid-Specific DNA-Binding FactorsEthidiumExonsGATA1 Transcription FactorGenes, ReporterHeLa CellsHumansImmunoprecipitationIntronsK562 CellsLuciferasesModels, GeneticMolecular Sequence DataMutationNuclear ProteinsPlasmidsPromoter Regions, GeneticSpectrinTemperatureTrans-ActivatorsTranscription FactorsTransfectionConceptsErythroid-specific expressionAlpha-spectrin geneGATA-1 sitesCore promoterDNase I hypersensitive sitesElectrophoretic mobility shift assaysChromatin immunoprecipitation assaysMobility shift assaysΑ-spectrin geneThymidine kinase promoterPositive regulatory elementHigh-level expressionGenomic orientationErythroid promoterGATA-1Membrane proteinsHypersensitive sitesImmunoprecipitation assaysRegulatory elementsSequence downstreamShift assaysErythroid differentiationTransfection assaysEnhancer activityReporter geneHereditary elliptocytosis: spectrin and protein 4.1R
Gallagher PG. Hereditary elliptocytosis: spectrin and protein 4.1R. Seminars In Hematology 2004, 41: 142-164. PMID: 15071791, DOI: 10.1053/j.seminhematol.2004.01.003.Peer-Reviewed Original ResearchUpdate on the clinical spectrum and genetics of red blood cell membrane disorders.
Gallagher PG. Update on the clinical spectrum and genetics of red blood cell membrane disorders. Current Hematology Reports 2004, 3: 85-91. PMID: 14965483.Peer-Reviewed Original ResearchConceptsStructure/function relationshipsSignificant genetic heterogeneityPrecise genetic defectGenetic lociMolecular biologyRed blood cell membrane disordersSplicing mutationGene deletionNonsense mutationCell membraneFunction relationshipsGenetic heterogeneityGenetic defectsHereditary elliptocytosisMembrane disordersRed blood cell membraneBlood cell membranesHereditary pyropoikilocytosisMutationsBetter understandingErythrocyte membranesMembraneLociGeneticsBiologyMutation of a highly conserved isoleucine disrupts hydrophobic interactions in the αβ spectrin self-association binding site
Gallagher PG, Zhang Z, Morrow JS, Forget BG. Mutation of a highly conserved isoleucine disrupts hydrophobic interactions in the αβ spectrin self-association binding site. Laboratory Investigation 2004, 84: 229-234. PMID: 14661034, DOI: 10.1038/labinvest.3700029.Peer-Reviewed Original ResearchConceptsBinding sitesAlpha-spectrin mutationsEvolutionary conservationSpectrin functionSpectrin repeatsTriple helical modelAlpha-spectrinGenetic studiesHydrophobic isoleucineHydrophobic interactionsLow-expression alleleMolecular modelingExpression alleleSpectrinFunctional defectsTriple helixMutationsHelical modelIsoleucineErythrocyte membranesDrosophilaClinical phenotypeNeonatal hemolytic anemiaRepeatsHelix
2003
Hereditary pyropoikilocytosis and the spectrinSt. Claude allele
Mootien S, Gallagher PG. Hereditary pyropoikilocytosis and the spectrinSt. Claude allele. British Journal Of Haematology 2003, 124: 251-252. PMID: 14687038, DOI: 10.1046/j.1365-2141.2003.04748.x.Peer-Reviewed Original Research
2002
Erythroid Expression of the Human α-Spectrin Gene Promoter Is Mediated by GATA-1- and NF-E2-binding Proteins*
Boulanger L, Sabatino DE, Wong EY, Cline AP, Garrett LJ, Garbarz M, Dhermy D, Bodine DM, Gallagher PG. Erythroid Expression of the Human α-Spectrin Gene Promoter Is Mediated by GATA-1- and NF-E2-binding Proteins*. Journal Of Biological Chemistry 2002, 277: 41563-41570. PMID: 12196550, DOI: 10.1074/jbc.m208184200.Peer-Reviewed Original ResearchMeSH Keywords5' Flanking RegionAnimalsBase SequenceBinding SitesDNA-Binding ProteinsDNA, ComplementaryErythroid Precursor CellsErythroid-Specific DNA-Binding FactorsErythropoiesisGATA1 Transcription FactorHeLa CellsHumansK562 CellsMiceMice, TransgenicMolecular Sequence DataNF-E2 Transcription FactorNF-E2 Transcription Factor, p45 SubunitPromoter Regions, GeneticSpectrinTranscription FactorsConceptsGene promoterGATA-1Reporter genePromoter/reporter plasmidsAlpha-spectrinGel mobility shift assaysErythroid-specific expressionFull promoter activityAlpha-spectrin geneMobility shift assaysErythroid progenitor cellsHuman tissue culture cell linesTissue culture cell linesAdult reticulocytesErythroid promoterNonerythroid tissuesMembrane proteinsLow-level expressionRegulatory elementsShift assaysErythroid expressionCell shapeDNase IErythroid cellsPromoter activity
2001
Dynamic molecular modeling of pathogenic mutations in the spectrin self-association domain
Zhang Z, Weed S, Gallagher P, Morrow J. Dynamic molecular modeling of pathogenic mutations in the spectrin self-association domain. Blood 2001, 98: 1645-1653. PMID: 11535493, DOI: 10.1182/blood.v98.6.1645.Peer-Reviewed Original ResearchConceptsSelf-association domainPoint mutationsHuman sequenceDrosophila alpha-spectrinDynamic molecular modelingHuman erythrocyte spectrinCytoskeletal functionSpecific point mutationsConservative substitutionsPrimary sequenceConformational rearrangementsAlpha-spectrinHelical regionHydrophilic residuesAmino acidsMutationsSpectrinSalt bridgeErythrocyte spectrinStructural consequencesPathogenic mutationsRepeat unitsMolecular modelingSequenceStructural disruption