2006
The Properties of Steric Gate Mutants Reveal Different Constraints within the Active Sites of Y-family and A-family DNA Polymerases*
DeLucia A, Chaudhuri S, Potapova O, Grindley N, Joyce C. The Properties of Steric Gate Mutants Reveal Different Constraints within the Active Sites of Y-family and A-family DNA Polymerases*. Journal Of Biological Chemistry 2006, 281: 27286-27291. PMID: 16831866, DOI: 10.1074/jbc.m604393200.Peer-Reviewed Original Research
2005
Structure of a Synaptic γδ Resolvase Tetramer Covalently Linked to Two Cleaved DNAs
Li W, Kamtekar S, Xiong Y, Sarkis GJ, Grindley ND, Steitz TA. Structure of a Synaptic γδ Resolvase Tetramer Covalently Linked to Two Cleaved DNAs. Science 2005, 309: 1210-1215. PMID: 15994378, DOI: 10.1126/science.1112064.Peer-Reviewed Original Research
2003
An error‐prone family Y DNA polymerase (DinB homolog from Sulfolobus solfataricus) uses a ‘steric gate’ residue for discrimination against ribonucleotides
DeLucia A, Grindley N, Joyce C. An error‐prone family Y DNA polymerase (DinB homolog from Sulfolobus solfataricus) uses a ‘steric gate’ residue for discrimination against ribonucleotides. Nucleic Acids Research 2003, 31: 4129-4137. PMID: 12853630, PMCID: PMC165950, DOI: 10.1093/nar/gkg417.Peer-Reviewed Original Research
2002
The Mutational Specificity of the Dbh Lesion Bypass Polymerase and Its Implications*
Potapova O, Grindley N, Joyce C. The Mutational Specificity of the Dbh Lesion Bypass Polymerase and Its Implications*. Journal Of Biological Chemistry 2002, 277: 28157-28166. PMID: 12023283, DOI: 10.1074/jbc.m202607200.Peer-Reviewed Original Research
2001
Contacts between the 5′ Nuclease of DNA Polymerase I and Its DNA Substrate*
Xu Y, Potapova O, Leschziner A, Grindley N, Joyce C. Contacts between the 5′ Nuclease of DNA Polymerase I and Its DNA Substrate*. Journal Of Biological Chemistry 2001, 276: 30167-30177. PMID: 11349126, DOI: 10.1074/jbc.m100985200.Peer-Reviewed Original ResearchMeSH KeywordsArginineBase SequenceBinding SitesCircular DichroismDNADNA Polymerase IDNA RepairEscherichia coliKineticsLysineModels, ChemicalModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedMutationOrganophosphorus CompoundsPhosphatesProtein BindingProtein Structure, TertiarySubstrate SpecificityTemperatureTime FactorsConceptsDNA substratesDNA polymerase INuclease domainCleavage siteBasic residuesPolymerase IDuplex DNANuclease cleavagePhosphate ethylation interferenceDNA-binding regionActive site regionDNA replicationOne-half turnBacteriophage T5Eukaryotic nucleasesSubstrate bindingAbasic DNAEthylation interferenceDuplex portionHelical archNucleaseSite regionEscherichia coliMethylphosphonate substitutionsPrimer strand
1999
Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity
Arnold P, Blake D, Grindley N, Boocock M, Stark W. Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. The EMBO Journal 1999, 18: 1407-1414. PMID: 10064606, PMCID: PMC1171230, DOI: 10.1093/emboj/18.5.1407.Peer-Reviewed Original Research
1998
A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides
Astatke M, Ng K, Grindley N, Joyce C. A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 3402-3407. PMID: 9520378, PMCID: PMC19848, DOI: 10.1073/pnas.95.7.3402.Peer-Reviewed Original Research
1996
Cis preference of the IS 903 transposase is mediated by a combination of transposase instability and inefficient translation
Derbyshire K, Grindley N. Cis preference of the IS 903 transposase is mediated by a combination of transposase instability and inefficient translation. Molecular Microbiology 1996, 21: 1261-1272. PMID: 8898394, DOI: 10.1111/j.1365-2958.1996.tb02587.x.Peer-Reviewed Original ResearchConceptsClasses of mutationsLevel of transpositionDNA-binding proteinsCis-acting proteinsAmount of transposaseCis preferenceWild-type transposaseInefficient translation initiationSite of synthesisAmino acids 25Translation initiationTranslational initiationTransposase proteinTranslation efficiencyMutant geneGene expressionProtein instabilityTransposase geneInefficient translationProline substitutionTransposaseMutant transposaseMutationsProteinUnusual class
1993
Analysis of a Nucleoprotein Complex: the Synaptosome of γδ Resolvase
Grindley N. Analysis of a Nucleoprotein Complex: the Synaptosome of γδ Resolvase. Science 1993, 262: 738-740. PMID: 8235593, DOI: 10.1126/science.8235593.Peer-Reviewed Original Research
1992
Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli.
Polesky A, Dahlberg M, Benkovic S, Grindley N, Joyce C. Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli. Journal Of Biological Chemistry 1992, 267: 8417-8428. PMID: 1569092, DOI: 10.1016/s0021-9258(18)42461-1.Peer-Reviewed Original Research
1990
Uncoupling of transpositional immunity from gamma delta transposition by a mutation at the end of gamma delta
Wiater L, Grindley N. Uncoupling of transpositional immunity from gamma delta transposition by a mutation at the end of gamma delta. Journal Of Bacteriology 1990, 172: 4959-4963. PMID: 2168371, PMCID: PMC213151, DOI: 10.1128/jb.172.9.4959-4963.1990.Peer-Reviewed Original ResearchIdentification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli.
Polesky A, Steitz T, Grindley N, Joyce C. Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. Journal Of Biological Chemistry 1990, 265: 14579-14591. PMID: 2201688, DOI: 10.1016/s0021-9258(18)77342-0.Peer-Reviewed Original ResearchConceptsCluster of residuesIdentification of residuesSite-directed mutagenesisActive site residuesAmino acid residuesFuture mutational studiesImportant active site residuesDNA-binding propertiesActive site regionDNA polymerase IGenetic screenPosition 849Polymerase active siteMutant proteinsDNA substratesMutational studiesPolymerase IBiochemical experimentsSite residuesAcid residuesSite regionEscherichia coliPolymerase activityMutationsPolymerase reactionThe two functional domains of gamma delta resolvase act on the same recombination site: implications for the mechanism of strand exchange.
Dröge P, Hatfull G, Grindley N, Cozzarelli N. The two functional domains of gamma delta resolvase act on the same recombination site: implications for the mechanism of strand exchange. Proceedings Of The National Academy Of Sciences Of The United States Of America 1990, 87: 5336-5340. PMID: 2164677, PMCID: PMC54318, DOI: 10.1073/pnas.87.14.5336.Peer-Reviewed Original ResearchConceptsDNA-protein complexesRecombination sitesSite-specific recombinationGamma delta resolvaseDNA exchangeCatalytic domainStrand exchangeFunctional domainsResolvaseResolvase subunitsDNA strandsRes sitesSynaptic complexDNAStrand breakageRecombinationReunion eventDomainSitesComplexesSubunitsStrandsBreakageSynaptosomesSaturation mutagenesis of the DNA site bound by the small carboxy‐terminal domain of gamma delta resolvase.
Rimphanitchayakit V, Grindley N. Saturation mutagenesis of the DNA site bound by the small carboxy‐terminal domain of gamma delta resolvase. The EMBO Journal 1990, 9: 719-725. PMID: 2155779, PMCID: PMC551726, DOI: 10.1002/j.1460-2075.1990.tb08165.x.Peer-Reviewed Original Research
1989
Preparation of heavy-atom derivatives using site-directed mutagenesis Introduction of cysteine residues into γδ resolvase
Hatfull G, Sanderson M, Freemont P, Raccuia P, Grindley N, Steitz T. Preparation of heavy-atom derivatives using site-directed mutagenesis Introduction of cysteine residues into γδ resolvase. Journal Of Molecular Biology 1989, 208: 661-667. PMID: 2553982, DOI: 10.1016/0022-2836(89)90156-3.Peer-Reviewed Original Research
1988
Uncoupling of the recombination and topoisomerase activities of the γδ resolvase by a mutation at the crossover point
Falvey E, Hatfull G, Grindley N. Uncoupling of the recombination and topoisomerase activities of the γδ resolvase by a mutation at the crossover point. Nature 1988, 332: 861-863. PMID: 2833710, DOI: 10.1038/332861a0.Peer-Reviewed Original Research
1987
The γδ resolvase induces an unusual DNA structure at the recombinational crossover point
Hatfull G, Noble S, Grindley N. The γδ resolvase induces an unusual DNA structure at the recombinational crossover point. Cell 1987, 49: 103-110. PMID: 3030563, DOI: 10.1016/0092-8674(87)90760-4.Peer-Reviewed Original Research
1986
A simple and efficient procedure for saturation mutagenesis using mixed oligodeoxynucleotides
Derbyshire K, Salvo J, Grindley N. A simple and efficient procedure for saturation mutagenesis using mixed oligodeoxynucleotides. Gene 1986, 46: 145-152. PMID: 3803923, DOI: 10.1016/0378-1119(86)90398-7.Peer-Reviewed Original Research
1985
Genetic mapping and DNA sequence analysis of mutations in the polA gene of Escherichia coli
Joyce C, Fujii D, Laks H, Hughes C, Grindley N. Genetic mapping and DNA sequence analysis of mutations in the polA gene of Escherichia coli. Journal Of Molecular Biology 1985, 186: 283-293. PMID: 3910840, DOI: 10.1016/0022-2836(85)90105-6.Peer-Reviewed Original ResearchConceptsDNA sequence analysisDNA polymerase IThree-dimensional structurePolymerase ISequence analysisPolA geneSingle-subunit enzymeEscherichia coliEnzyme-DNA interactionsGenetic mappingDeletion mutantsSubunit enzymeMutant formsPrimary sequenceMutational changesBacteriophage lambdaExcellent modelPolA mutantsPolA mutationEnzymatic behaviorMutantsMutationsGenesDNAColi
1984
Analysis of the γδ res site Sites required for site-specific recombination and gene expression
Wells R, Grindley N. Analysis of the γδ res site Sites required for site-specific recombination and gene expression. Journal Of Molecular Biology 1984, 179: 667-687. PMID: 6094833, DOI: 10.1016/0022-2836(84)90161-x.Peer-Reviewed Original Research