1998
Tn552 transposase catalyzes concerted strand transfer in vitro
Leschziner A, Griffin T, Grindley N. Tn552 transposase catalyzes concerted strand transfer in vitro. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 7345-7350. PMID: 9636151, PMCID: PMC22612, DOI: 10.1073/pnas.95.13.7345.Peer-Reviewed Original Research
1997
Two abundant intramolecular transposition products, resulting from reactions initiated at a single end, suggest that IS2 transposes by an unconventional pathway
Lewis L, Grindley N. Two abundant intramolecular transposition products, resulting from reactions initiated at a single end, suggest that IS2 transposes by an unconventional pathway. Molecular Microbiology 1997, 25: 517-529. PMID: 9302014, DOI: 10.1046/j.1365-2958.1997.4871848.x.Peer-Reviewed Original ResearchBacterial ProteinsBase SequenceBinding SitesCloning, MolecularDNA NucleotidyltransferasesDNA PrimersDNA Transposable ElementsDNA, BacterialDNA, CircularEscherichia coliEscherichia coli ProteinsMicroscopy, ElectronModels, GeneticMolecular Sequence DataNucleic Acid ConformationPolymerase Chain ReactionRecombinant Fusion ProteinsTransposases
1990
Saturation mutagenesis of the DNA site bound by the small carboxy‐terminal domain of gamma delta resolvase.
Rimphanitchayakit V, Grindley N. Saturation mutagenesis of the DNA site bound by the small carboxy‐terminal domain of gamma delta resolvase. The EMBO Journal 1990, 9: 719-725. PMID: 2155779, PMCID: PMC551726, DOI: 10.1002/j.1460-2075.1990.tb08165.x.Peer-Reviewed Original Research
1986
A simple and efficient procedure for saturation mutagenesis using mixed oligodeoxynucleotides
Derbyshire K, Salvo J, Grindley N. A simple and efficient procedure for saturation mutagenesis using mixed oligodeoxynucleotides. Gene 1986, 46: 145-152. PMID: 3803923, DOI: 10.1016/0378-1119(86)90398-7.Peer-Reviewed Original Research
1985
Genetic mapping and DNA sequence analysis of mutations in the polA gene of Escherichia coli
Joyce C, Fujii D, Laks H, Hughes C, Grindley N. Genetic mapping and DNA sequence analysis of mutations in the polA gene of Escherichia coli. Journal Of Molecular Biology 1985, 186: 283-293. PMID: 3910840, DOI: 10.1016/0022-2836(85)90105-6.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceChromosome MappingCloning, MolecularDNA Polymerase IDNA ReplicationDNA, BacterialEscherichia coliGenesGenes, BacterialMutationConceptsDNA sequence analysisDNA polymerase IThree-dimensional structurePolymerase ISequence analysisPolA geneSingle-subunit enzymeEscherichia coliEnzyme-DNA interactionsGenetic mappingDeletion mutantsSubunit enzymeMutant formsPrimary sequenceMutational changesBacteriophage lambdaExcellent modelPolA mutantsPolA mutationEnzymatic behaviorMutantsMutationsGenesDNAColi
1984
Method for determining whether a gene of Escherichia coli is essential: application to the polA gene
Joyce C, Grindley N. Method for determining whether a gene of Escherichia coli is essential: application to the polA gene. Journal Of Bacteriology 1984, 158: 636-643. PMID: 6233260, PMCID: PMC215477, DOI: 10.1128/jb.158.2.636-643.1984.Peer-Reviewed Original ResearchConceptsPolA geneTarget genesRich mediumEscherichia coliPhage lambda vectorTarget lociBacterial chromosomeHomologous recombinationPhysical mapProphage excisionDNA segmentsMinimal mediumAntibiotic resistance genesPolymerase 3Recombinational eventsLambda vectorGenesResistance genesChromosomal deletionsDeletionFunctional fragmentsExonucleaseMarked deletionPhagesPresence of plasmids
1983
Construction of a plasmid that overproduces the large proteolytic fragment (Klenow fragment) of DNA polymerase I of Escherichia coli.
Joyce C, Grindley N. Construction of a plasmid that overproduces the large proteolytic fragment (Klenow fragment) of DNA polymerase I of Escherichia coli. Proceedings Of The National Academy Of Sciences Of The United States Of America 1983, 80: 1830-1834. PMID: 6340110, PMCID: PMC393703, DOI: 10.1073/pnas.80.7.1830.Peer-Reviewed Original ResearchConceptsDNA polymerase IOverproducing strainPolymerase IGene fusion techniquesLarge proteolytic fragmentCellular proteinsLac promoterGene fragmentsProtein structurePhage lambdaLeftward promoterEscherichia coliCarboxyl terminalPolymerase fragmentProteolytic fragmentsKlenow fragmentPromoterPlasmidPurification procedureFragmentsOverproductionExpressionI. MoreoverMechanistic studiesCloning