2024
Noninvasive assessment of the lung inflammation-fibrosis axis by targeted imaging of CMKLR1
Mannes P, Adams T, Farsijani S, Barnes C, Latoche J, Day K, Nedrow J, Ahangari F, Kaminski N, Lee J, Tavakoli S. Noninvasive assessment of the lung inflammation-fibrosis axis by targeted imaging of CMKLR1. Science Advances 2024, 10: eadm9817. PMID: 38896611, PMCID: PMC11186491, DOI: 10.1126/sciadv.adm9817.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisFibrotic lung diseaseRisk stratificationMurine modelLung fibrosisLung diseaseModel of bleomycin-induced lung fibrosisBleomycin-induced lung fibrosisImaging biomarkersMurine model of bleomycin-induced lung fibrosisBronchoalveolar lavage cellsMonocyte-derived macrophagesPositron emission tomographyInflammatory endotypesPulmonary fibrosisLavage cellsPoor survivalNoninvasive assessmentTherapeutic monitoringEmission tomographyCMKLR1FibrosisClinical trajectoryLungLung regions
2022
Characterization of the COPD alveolar niche using single-cell RNA sequencing
Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, Schupp JC, Nouws J, Robertson MJ, Coarfa C, Yang T, Chioccioli M, Omote N, Cosme C, Poli S, Ayaub EA, Chu SG, Jensen KH, Gomez JL, Britto CJ, Raredon MSB, Niklason LE, Wilson AA, Timshel PN, Kaminski N, Rosas IO. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nature Communications 2022, 13: 494. PMID: 35078977, PMCID: PMC8789871, DOI: 10.1038/s41467-022-28062-9.Peer-Reviewed Original ResearchConceptsSingle-cell RNA sequencingRNA sequencingCell-specific mechanismsChronic obstructive pulmonary diseaseAdvanced chronic obstructive pulmonary diseaseTranscriptomic network analysisSingle-cell RNA sequencing profilesCellular stress toleranceAberrant cellular metabolismStress toleranceRNA sequencing profilesTranscriptional evidenceCellular metabolismAlveolar nicheSequencing profilesHuman alveolar epithelial cellsChemokine signalingAlveolar epithelial type II cellsObstructive pulmonary diseaseSitu hybridizationType II cellsEpithelial type II cellsSequencingCOPD pathobiologyHuman lung tissue samplesSingle-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19
Unterman A, Sumida TS, Nouri N, Yan X, Zhao AY, Gasque V, Schupp JC, Asashima H, Liu Y, Cosme C, Deng W, Chen M, Raredon MSB, Hoehn KB, Wang G, Wang Z, DeIuliis G, Ravindra NG, Li N, Castaldi C, Wong P, Fournier J, Bermejo S, Sharma L, Casanovas-Massana A, Vogels CBF, Wyllie AL, Grubaugh ND, Melillo A, Meng H, Stein Y, Minasyan M, Mohanty S, Ruff WE, Cohen I, Raddassi K, Niklason L, Ko A, Montgomery R, Farhadian S, Iwasaki A, Shaw A, van Dijk D, Zhao H, Kleinstein S, Hafler D, Kaminski N, Dela Cruz C. Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19. Nature Communications 2022, 13: 440. PMID: 35064122, PMCID: PMC8782894, DOI: 10.1038/s41467-021-27716-4.Peer-Reviewed Original ResearchMeSH KeywordsAdaptive ImmunityAgedAntibodies, Monoclonal, HumanizedCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCells, CulturedCOVID-19COVID-19 Drug TreatmentFemaleGene Expression ProfilingGene Expression RegulationHumansImmunity, InnateMaleReceptors, Antigen, B-CellReceptors, Antigen, T-CellRNA-SeqSARS-CoV-2Single-Cell AnalysisConceptsProgressive COVID-19B cell clonesSingle-cell analysisT cellsImmune responseMulti-omics single-cell analysisCOVID-19Cell clonesAdaptive immune interactionsSevere COVID-19Dynamic immune responsesGene expressionSARS-CoV-2 virusAdaptive immune systemSomatic hypermutation frequenciesCellular effectsProtein markersEffector CD8Immune signaturesProgressive diseaseHypermutation frequencyProgressive courseClassical monocytesClonesImmune interactionsLung Microenvironments and Disease Progression in Fibrotic Hypersensitivity Pneumonitis.
De Sadeleer LJ, McDonough JE, Schupp JC, Yan X, Vanstapel A, Van Herck A, Everaerts S, Geudens V, Sacreas A, Goos T, Aelbrecht C, Nawrot TS, Martens DS, Schols D, Claes S, Verschakelen JA, Verbeken EK, Ackermann M, Decottignies A, Mahieu M, Hackett TL, Hogg JC, Vanaudenaerde BM, Verleden SE, Kaminski N, Wuyts WA. Lung Microenvironments and Disease Progression in Fibrotic Hypersensitivity Pneumonitis. American Journal Of Respiratory And Critical Care Medicine 2022, 205: 60-74. PMID: 34724391, PMCID: PMC8865586, DOI: 10.1164/rccm.202103-0569oc.Peer-Reviewed Original ResearchConceptsFibrotic hypersensitivity pneumonitisIdiopathic pulmonary fibrosisHypersensitivity pneumonitisLung zonesMolecular traitsUnused donor lungsInterstitial lung diseaseLocal disease extentProgression of fibrosisSevere fibrosis groupGene co-expression network analysisCo-expression network analysisExplant lungsDonor lungsLung involvementEndothelial functionLung findingsDisease extentPulmonary fibrosisLung diseaseFibrosis groupLung microenvironmentClinical behaviorDisease progressionBAL samples
2021
Distinct roles of KLF4 in mesenchymal cell subtypes during lung fibrogenesis
Chandran RR, Xie Y, Gallardo-Vara E, Adams T, Garcia-Milian R, Kabir I, Sheikh AQ, Kaminski N, Martin KA, Herzog EL, Greif DM. Distinct roles of KLF4 in mesenchymal cell subtypes during lung fibrogenesis. Nature Communications 2021, 12: 7179. PMID: 34893592, PMCID: PMC8664937, DOI: 10.1038/s41467-021-27499-8.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell ProliferationDisease Models, AnimalDown-RegulationExtracellular MatrixFemaleFibroblastsFibrosisHumansKruppel-Like Factor 4LungLung InjuryMaleMesenchymal Stem CellsMiceMice, Inbred C57BLMyofibroblastsReceptor, Platelet-Derived Growth Factor betaRespiratory Tract DiseasesSignal TransductionTransforming Growth Factor betaConceptsMesenchymal cell typesPlatelet-derived growth factor receptorSmooth muscle actinLung fibrosisKruppel-like factor 4Forkhead box M1Growth factor receptorCell transitionCell typesExtracellular matrixDistinct rolesKLF4Box M1C chemokine ligandMesenchymal cell subtypesFactor receptorPro-fibrotic effectsFactor 4PDGFRMesenchymeCellsMacrophage accumulationKLF4 levelsChemokine ligandLung fibrogenesisMachine learning implicates the IL-18 signaling axis in severe asthma
Camiolo MJ, Zhou X, Wei Q, Bittar H, Kaminski N, Ray A, Wenzel S. Machine learning implicates the IL-18 signaling axis in severe asthma. JCI Insight 2021, 6: e149945. PMID: 34591794, PMCID: PMC8663569, DOI: 10.1172/jci.insight.149945.Peer-Reviewed Original ResearchConceptsLung functionIL-18NF-κBTranscriptional hallmarksExacerbation-prone asthmaSevere asthma pathogenesisSubgroup of patientsVariable natural historySevere Asthma Research Program (SARP) cohortDownstream NF-κBMixed inflammatory processActivator protein-1 (AP-1) activationPathobiological underpinningsCorticosteroid exposureSevere asthmaAsthma clustersAsthma pathogenesisPatient morbidityInflammatory processProtein-1 activationExternal cohortLung tissuePatient clustersAP-1 activityNatural historyIntegrated transcriptomic analysis of human tuberculosis granulomas and a biomimetic model identifies therapeutic targets
Reichmann MT, Tezera LB, Vallejo AF, Vukmirovic M, Xiao R, Reynolds J, Jogai S, Wilson S, Marshall B, Jones MG, Leslie A, D'Armiento JM, Kaminski N, Polak ME, Elkington P. Integrated transcriptomic analysis of human tuberculosis granulomas and a biomimetic model identifies therapeutic targets. Journal Of Clinical Investigation 2021, 131 PMID: 34128839, PMCID: PMC8321576, DOI: 10.1172/jci148136.Peer-Reviewed Original ResearchConceptsTherapeutic targetTB granulomasHuman TB diseaseHuman tuberculosis granulomasNoninfectious granulomatous diseasesPathological host responsesSarcoidosis lymph nodesInflammatory immune responseSphingosine kinase 1 inhibitionInflammatory mediator secretionPotential therapeutic targetHuman TB granulomasKinase 1 inhibitionHuman cell culture modelsInfected granulomasTB diseaseLymph nodesTB outcomesTuberculosis granulomasStandard treatmentSphingosine kinase 1Granulomatous diseaseLaser capture microdissectionMediator secretionExtensive infectionBlood Transcriptomics Predicts Progression of Pulmonary Fibrosis and Associated Natural Killer Cells.
Huang Y, Oldham JM, Ma SF, Unterman A, Liao SY, Barros AJ, Bonham CA, Kim JS, Vij R, Adegunsoye A, Strek ME, Molyneaux PL, Maher TM, Herazo-Maya JD, Kaminski N, Moore BB, Martinez FJ, Noth I. Blood Transcriptomics Predicts Progression of Pulmonary Fibrosis and Associated Natural Killer Cells. American Journal Of Respiratory And Critical Care Medicine 2021, 204: 197-208. PMID: 33689671, PMCID: PMC8650792, DOI: 10.1164/rccm.202008-3093oc.Peer-Reviewed Original ResearchMicroRNA miR-24-3p reduces DNA damage responses, apoptosis, and susceptibility to chronic obstructive pulmonary disease
Nouws J, Wan F, Finnemore E, Roque W, Kim SJ, Bazan IS, Li CX, Sköld C, Dai Q, Yan X, Chioccioli M, Neumeister V, Britto CJ, Sweasy J, Bindra RS, Wheelock ÅM, Gomez JL, Kaminski N, Lee PJ, Sauler M. MicroRNA miR-24-3p reduces DNA damage responses, apoptosis, and susceptibility to chronic obstructive pulmonary disease. JCI Insight 2021, 6: e134218. PMID: 33290275, PMCID: PMC7934877, DOI: 10.1172/jci.insight.134218.Peer-Reviewed Original ResearchConceptsCellular stress responseStress responseHomology-directed DNA repairDNA damage responseProtein BRCA1Damage responseCellular stressDNA repairProtein BimCOPD lung tissueLung epithelial cellsCellular responsesExpression arraysEpithelial cell apoptosisDNA damageChronic obstructive pulmonary diseaseBRCA1 expressionCell apoptosisApoptosisEpithelial cellsCritical mechanismMicroRNAsRegulatorObstructive pulmonary diseaseIncreases SusceptibilityElevated plasma level of Pentraxin 3 is associated with emphysema and mortality in smokers
Zhang Y, Tedrow J, Nouraie M, Li X, Chandra D, Bon J, Kass DJ, Fuhrman CR, Leader JK, Duncan SR, Kaminski N, Sciurba FC. Elevated plasma level of Pentraxin 3 is associated with emphysema and mortality in smokers. Thorax 2021, 76: 335-342. PMID: 33479043, PMCID: PMC8249179, DOI: 10.1136/thoraxjnl-2020-215356.Peer-Reviewed Original ResearchConceptsAirflow obstructionPlasma levelsLung tissueEmphysema severitySmoking-related lung diseaseAssociation of lungExpiratory airflow obstructionFormer tobacco smokersLevels of PTX3PTX3 gene expressionElevated plasma levelsHyaluronic acid levelsBlood of subjectsPlasma PTX3PTX3 levelsLung functionTobacco exposureClinical outcomesTobacco smokersLung diseasePentraxin 3Predictive biomarkersPTX3 expressionLower riskDisease patternsMacrophage-derived netrin-1 drives adrenergic nerve–associated lung fibrosis
Gao R, Peng X, Perry C, Sun H, Ntokou A, Ryu C, Gomez JL, Reeves BC, Walia A, Kaminski N, Neumark N, Ishikawa G, Black KE, Hariri LP, Moore MW, Gulati M, Homer RJ, Greif DM, Eltzschig HK, Herzog EL. Macrophage-derived netrin-1 drives adrenergic nerve–associated lung fibrosis. Journal Of Clinical Investigation 2021, 131: e136542. PMID: 33393489, PMCID: PMC7773383, DOI: 10.1172/jci136542.Peer-Reviewed Original ResearchConceptsNetrin-1Lung fibrosisCell-specific knockout miceΑ1-adrenoreceptor blockadeIPF lung tissueNeuronal guidance proteinsNetrin-1 expressionExtracellular matrix accumulationAdrenergic processesAdrenoreceptor antagonismAdrenoreceptor blockadeFibrotic histologyInflammatory scarringIPF cohortAdrenergic nervesΑ1-blockersImproved survivalColorectal carcinomaLung tissueKnockout miceCollagen accumulationFibrosisMatrix accumulationMacrophagesGuidance proteins
2020
Gene coexpression networks reveal novel molecular endotypes in alpha-1 antitrypsin deficiency
Chu JH, Zang W, Vukmirovic M, Yan X, Adams T, DeIuliis G, Hu B, Mihaljinec A, Schupp JC, Becich MJ, Hochheiser H, Gibson KF, Chen ES, Morris A, Leader JK, Wisniewski SR, Zhang Y, Sciurba FC, Collman RG, Sandhaus R, Herzog EL, Patterson KC, Sauler M, Strange C, Kaminski N. Gene coexpression networks reveal novel molecular endotypes in alpha-1 antitrypsin deficiency. Thorax 2020, 76: 134-143. PMID: 33303696, PMCID: PMC10794043, DOI: 10.1136/thoraxjnl-2019-214301.Peer-Reviewed Original ResearchConceptsWeighted gene co-expression network analysisAlpha-1 antitrypsin deficiencyGene modulesGene co-expression network analysisDifferential gene expression analysisCo-expression network analysisPeripheral blood mononuclear cellsGene expression patternsPBMC gene expression patternsGene coexpression networksAATD individualsGene expression profilesGene expression analysisBronchoalveolar lavageAugmentation therapyClinical variablesAntitrypsin deficiencyGene expression assaysRNA-seqCoexpression networkGene validationExpression analysisExpression assaysWGCNA modulesExpression patternsSingle-Cell Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis.
Schupp JC, Khanal S, Gomez JL, Sauler M, Adams TS, Chupp GL, Yan X, Poli S, Zhao Y, Montgomery RR, Rosas IO, Dela Cruz CS, Bruscia EM, Egan ME, Kaminski N, Britto CJ. Single-Cell Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2020, 202: 1419-1429. PMID: 32603604, PMCID: PMC7667912, DOI: 10.1164/rccm.202004-0991oc.Peer-Reviewed Original ResearchConceptsCF lung diseaseHealthy control subjectsImmune dysfunctionLung diseaseCystic fibrosisControl subjectsSputum cellsAbnormal chloride transportLung mononuclear phagocytesInnate immune dysfunctionDivergent clinical coursesImmune cell repertoireMonocyte-derived macrophagesCF monocytesAirway inflammationClinical courseProinflammatory featuresCell survival programInflammatory responseTissue injuryCell repertoireImmune functionTranscriptional profilesAlveolar macrophagesMononuclear phagocytesCMH-Small Molecule Docks into SIRT1, Elicits Human IPF-Lung Fibroblast Cell Death, Inhibits Ku70-deacetylation, FLIP and Experimental Pulmonary Fibrosis
Konikov-Rozenman J, Breuer R, Kaminski N, Wallach-Dayan SB. CMH-Small Molecule Docks into SIRT1, Elicits Human IPF-Lung Fibroblast Cell Death, Inhibits Ku70-deacetylation, FLIP and Experimental Pulmonary Fibrosis. Biomolecules 2020, 10: 997. PMID: 32630842, PMCID: PMC7408087, DOI: 10.3390/biom10070997.Peer-Reviewed Original ResearchMeSH KeywordsAcetylationAnimalsBinding SitesCASP8 and FADD-Like Apoptosis Regulating ProteinCell LineCell SurvivalDisease Models, AnimalFibroblastsGene Expression RegulationHumansHydroxamic AcidsIdiopathic Pulmonary FibrosisKu AutoantigenLungMaleMiceMice, Inbred C57BLModels, MolecularMolecular Docking SimulationProtein ConformationProtein StabilitySirtuin 1ConceptsIdiopathic pulmonary fibrosisPulmonary fibrosisFibrotic-lung myofibroblastsProgressive lung diseaseExperimental pulmonary fibrosisFibroblast cell deathLung diseaseLung fibrosisLung sectionsVital organsFlow cytometryFibrosisMyofibroblast resistanceRegenerative capacityFLIP levelsCell survivalCell deathImmunoblotCmHSIRT1Activity inhibitionUseful strategySmall moleculesBleomycinMyofibroblastsTocilizumab Treatment for Cytokine Release Syndrome in Hospitalized Patients With Coronavirus Disease 2019 Survival and Clinical Outcomes
Price CC, Altice FL, Shyr Y, Koff A, Pischel L, Goshua G, Azar MM, Mcmanus D, Chen SC, Gleeson SE, Britto CJ, Azmy V, Kaman K, Gaston DC, Davis M, Burrello T, Harris Z, Villanueva MS, Aoun-Barakat L, Kang I, Seropian S, Chupp G, Bucala R, Kaminski N, Lee AI, LoRusso PM, Topal JE, Dela Cruz C, Malinis M. Tocilizumab Treatment for Cytokine Release Syndrome in Hospitalized Patients With Coronavirus Disease 2019 Survival and Clinical Outcomes. CHEST Journal 2020, 158: 1397-1408. PMID: 32553536, PMCID: PMC7831876, DOI: 10.1016/j.chest.2020.06.006.Peer-Reviewed Original ResearchConceptsCytokine release syndromeTocilizumab-treated patientsSevere diseaseRelease syndromeTocilizumab treatmentInflammatory biomarkersNonsevere diseaseSoluble IL-2 receptor levelsHigh-sensitivity C-reactive proteinIL-2 receptor levelsConsecutive COVID-19 patientsIL-6 receptor antagonistMechanical ventilation outcomesC-reactive proteinCOVID-19 patientsHigher admission levelsRace/ethnicityMV daysVentilation outcomesAdverse eventsChart reviewClinical responseMedian ageWhite patientsClinical outcomesExpression of SARS-CoV-2 receptor ACE2 and coincident host response signature varies by asthma inflammatory phenotype
Camiolo M, Gauthier M, Kaminski N, Ray A, Wenzel SE. Expression of SARS-CoV-2 receptor ACE2 and coincident host response signature varies by asthma inflammatory phenotype. Journal Of Allergy And Clinical Immunology 2020, 146: 315-324.e7. PMID: 32531372, PMCID: PMC7283064, DOI: 10.1016/j.jaci.2020.05.051.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAngiotensin-Converting Enzyme 2AsthmaBetacoronavirusBiomarkersBronchiBronchoalveolar Lavage FluidCohort StudiesCoronavirus InfectionsCOVID-19EosinophilsFemaleGene Expression ProfilingHumansInterferon Type IInterferon-gammaMaleMiddle AgedPandemicsPeptidyl-Dipeptidase APneumonia, ViralProtein Interaction MappingReceptors, VirusRisk FactorsSARS-CoV-2Severity of Illness IndexT-LymphocytesTranscriptomeUnited StatesConceptsCoronavirus disease 2019Severe coronavirus disease 2019Subset of patientsDisease 2019Risk factorsBronchial epitheliumAcute respiratory syndrome coronavirus 2 infectionSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectionSevere acute respiratory syndrome coronavirus 2Syndrome coronavirus 2 infectionType 2 inflammatory biomarkersAcute respiratory syndrome coronavirus 2Receptor ACE2SARS-CoV-2 receptor ACE2Respiratory syndrome coronavirus 2Asthma inflammatory phenotypesLarge asthma cohortsLower peripheral bloodT cell-activating factorCoronavirus 2 infectionEnzyme 2 (ACE2) expressionHistory of hypertensionDiagnosis of asthmaBronchoalveolar lavage lymphocytesT cell recruitmentCollagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis
Tsukui T, Sun KH, Wetter JB, Wilson-Kanamori JR, Hazelwood LA, Henderson NC, Adams TS, Schupp JC, Poli SD, Rosas IO, Kaminski N, Matthay MA, Wolters PJ, Sheppard D. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nature Communications 2020, 11: 1920. PMID: 32317643, PMCID: PMC7174390, DOI: 10.1038/s41467-020-15647-5.Peer-Reviewed Original ResearchConceptsCollagen-producing cellsSitu hybridization showDisease-relevant phenotypesCell atlasDistinct localizationExpression of CTHRC1Fibrotic lungsDifferent compartmentsPulmonary fibrosisDistinct anatomical localizationCellsCTHRC1Murine lungFibroblastsIdiopathic pulmonary fibrosisAdoptive transfer experimentsLocalizationSubpopulationsComplex architectureTransfer experimentsFibroblastic fociPathologic fibrosisPathologic scarringScleroderma patientsSimilar heterogeneityGenome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis
Allen RJ, Guillen-Guio B, Oldham JM, Ma SF, Dressen A, Paynton ML, Kraven LM, Obeidat M, Li X, Ng M, Braybrooke R, Molina-Molina M, Hobbs BD, Putman RK, Sakornsakolpat P, Booth HL, Fahy WA, Hart SP, Hill MR, Hirani N, Hubbard RB, McAnulty RJ, Millar AB, Navaratnam V, Oballa E, Parfrey H, Saini G, Whyte MKB, Zhang Y, Kaminski N, Adegunsoye A, Strek ME, Neighbors M, Sheng XR, Gudmundsson G, Gudnason V, Hatabu H, Lederer DJ, Manichaikul A, Newell JD, O’Connor G, Ortega VE, Xu H, Fingerlin TE, Bossé Y, Hao K, Joubert P, Nickle DC, Sin DD, Timens W, Furniss D, Morris AP, Zondervan KT, Hall IP, Sayers I, Tobin MD, Maher TM, Cho MH, Hunninghake GM, Schwartz DA, Yaspan BL, Molyneaux PL, Flores C, Noth I, Jenkins RG, Wain LV. Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2020, 201: 564-574. PMID: 31710517, PMCID: PMC7047454, DOI: 10.1164/rccm.201905-1017oc.Peer-Reviewed Original ResearchMeSH KeywordsAgedCase-Control StudiesCell Cycle ProteinsFemaleGene ExpressionGenetic Predisposition to DiseaseGenome-Wide Association StudyHumansIdiopathic Pulmonary FibrosisIntracellular Signaling Peptides and ProteinsKinesinsMaleMiddle AgedRisk AssessmentSignal TransductionSpindle ApparatusTOR Serine-Threonine KinasesConceptsGenome-wide association studiesAssociation studiesIPF susceptibilityNew genome-wide significant signalsGenome-wide significant signalsGenome-wide analysisCell-cell adhesionLarge genome-wide association studiesImportance of mTORPolygenic risk score analysisTelomere maintenanceCausal genesFunctional analysisSusceptibility variantsRisk score analysisMultiple pathwaysGenetic associationGenesHost defensePolygenic risk scoresIndependent studiesPossible roleExpression associatesSignificant signalRecent studiesPlatform Effects on Regeneration by Pulmonary Basal Cells as Evaluated by Single-Cell RNA Sequencing
Greaney AM, Adams TS, Raredon M, Gubbins E, Schupp JC, Engler AJ, Ghaedi M, Yuan Y, Kaminski N, Niklason LE. Platform Effects on Regeneration by Pulmonary Basal Cells as Evaluated by Single-Cell RNA Sequencing. Cell Reports 2020, 30: 4250-4265.e6. PMID: 32209482, PMCID: PMC7175071, DOI: 10.1016/j.celrep.2020.03.004.Peer-Reviewed Original ResearchConceptsSingle-cell RNA sequencingBasal marker expressionBasal cellsChronic pulmonary diseaseRat tracheal epitheliumPulmonary diseaseRNA sequencingCell-based therapiesRat tracheaAir-liquid interfaceTissue graftMarker expressionTracheal epitheliumRegenerative outcomesTracheaEpithelial progenitorsDifferential outcomesEpitheliumOutcomesWhole organPopulation levelSmall airways pathology in idiopathic pulmonary fibrosis: a retrospective cohort study
Verleden SE, Tanabe N, McDonough JE, Vasilescu DM, Xu F, Wuyts WA, Piloni D, De Sadeleer L, Willems S, Mai C, Hostens J, Cooper JD, Verbeken EK, Verschakelen J, Galban CJ, Van Raemdonck DE, Colby TV, Decramer M, Verleden GM, Kaminski N, Hackett TL, Vanaudenaerde BM, Hogg JC. Small airways pathology in idiopathic pulmonary fibrosis: a retrospective cohort study. The Lancet Respiratory Medicine 2020, 8: 573-584. PMID: 32061334, PMCID: PMC7292784, DOI: 10.1016/s2213-2600(19)30356-x.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisSevere idiopathic pulmonary fibrosisUnused donor lungsRetrospective cohort studyTerminal bronchiolesMultidetector CTCohort studyDonor lungsPulmonary fibrosisIPF tissueLung tissueMinimal fibrosisVideo-assisted thoracic surgical biopsyDiagnosis of IPFAshcroft fibrosis scoreMultidisciplinary consensus committeeStructural lung injuryInflammatory immune cellsExpiratory flow rateLow lung volumesPotential therapeutic targetMicro-CTLung transplantationVisible airwaysIPF group