2022
Bronchial epithelium epithelial-mesenchymal plasticity forms aberrant basaloid-like cells in vitro
Uthaya Kumar DB, Motakis E, Yurieva M, Kohar V, Martinek J, Wu TC, Khoury J, Grassmann J, Lu M, Palucka K, Kaminski N, Koff JL, Williams A. Bronchial epithelium epithelial-mesenchymal plasticity forms aberrant basaloid-like cells in vitro. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2022, 322: l822-l841. PMID: 35438006, PMCID: PMC9142163, DOI: 10.1152/ajplung.00254.2021.Peer-Reviewed Original ResearchMeSH KeywordsEpithelial CellsEpithelial-Mesenchymal TransitionEpitheliumHumansLung DiseasesRespiratory MucosaRNA, Long NoncodingConceptsProtein codingEpithelial-mesenchymal transitionLncRNA genesEMT inductionSingle-cell RNA sequencingSingle-cell RNA-seq dataEpithelial-mesenchymal plasticityRNA-seq dataMechanisms of EMTSingle-cell levelEpithelial cell typesRole of EMTTranscriptional reprogrammingHuman bronchial epithelial cellsRNA genesEMT gene signatureTranscriptional changesTranscriptional differencesRNA sequencingSpecific lncRNAsBronchial epithelial cellsDifferential expressionMyofibroblast conversionCell typesGenes
2020
Reduced development of COVID-19 in children reveals molecular checkpoints gating pathogenesis illuminating potential therapeutics
Steinman JB, Lum FM, Ho PP, Kaminski N, Steinman L. Reduced development of COVID-19 in children reveals molecular checkpoints gating pathogenesis illuminating potential therapeutics. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 24620-24626. PMID: 32883878, PMCID: PMC7547272, DOI: 10.1073/pnas.2012358117.Peer-Reviewed Original ResearchConceptsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptorT helper 2 (Th2) immune responsesCross-reactive humoral immunityCOVID-19T cell immunityT helper 2SARS-CoV-2Cell immunityCommon coronavirusesHelper 2Humoral immunityInflammatory cytokinesRespiratory tractImmune responseCommon coldPandemic virusPotential therapeuticsChildrenPathogenesisImmunityReduced developmentMolecular checkpointsCoronavirusLow levelsEosinophiliaGenetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways
Li X, Christenson SA, Modena B, Li H, Busse WW, Castro M, Denlinger LC, Erzurum SC, Fahy JV, Gaston B, Hastie AT, Israel E, Jarjour NN, Levy BD, Moore WC, Woodruff PG, Kaminski N, Wenzel SE, Bleecker ER, Meyers DA, Program N. Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways. Journal Of Allergy And Clinical Immunology 2020, 147: 894-909. PMID: 32795586, PMCID: PMC7876167, DOI: 10.1016/j.jaci.2020.07.030.Peer-Reviewed Original ResearchConceptsExpression quantitative trait loci (eQTL) analysisQuantitative trait locus (QTL) analysisSingle nucleotide polymorphismsGasdermin BMultiple single nucleotide polymorphismsFunctional genesExpression levelsLocus analysisAntiviral pathwaysGenes/single-nucleotide polymorphismsWhole genome sequencesGene expression dataEpithelial cellsImmune system pathwaysHigh expression levelsHuman bronchial epithelial cellsIFN regulatory factorGPI attachmentGSDMB expressionAsthma susceptibilityGenetic analysisGene expressionPathway analysisBronchial epithelial cellsRegulatory factors
2019
BAL Cell Gene Expression Is Indicative of Outcome and Airway Basal Cell Involvement in Idiopathic Pulmonary Fibrosis
Prasse A, Binder H, Schupp JC, Kayser G, Bargagli E, Jaeger B, Hess M, Rittinghausen S, Vuga L, Lynn H, Violette S, Jung B, Quast K, Vanaudenaerde B, Xu Y, Hohlfeld JM, Krug N, Herazo-Maya JD, Rottoli P, Wuyts WA, Kaminski N. BAL Cell Gene Expression Is Indicative of Outcome and Airway Basal Cell Involvement in Idiopathic Pulmonary Fibrosis. American Journal Of Respiratory And Critical Care Medicine 2019, 199: 622-630. PMID: 30141961, PMCID: PMC6396865, DOI: 10.1164/rccm.201712-2551oc.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisAirway basal cellsChronic obstructive pulmonary diseaseObstructive pulmonary diseasePulmonary diseaseBAL cellsBasal cellsPulmonary fibrosisControl subjectsCell gene expressionIndependent IPF cohortsNine-gene signatureIPF cohortDerivation cohortClinical parametersRetrospective studyUnivariate analysisUnpredictable courseCell involvementDiscovery cohortGene expressionHealthy volunteersCox modelStage IIIFatal disease
2015
eQTL of bronchial epithelial cells and bronchial alveolar lavage deciphers GWAS‐identified asthma genes
Li X, Hastie AT, Hawkins GA, Moore WC, Ampleford EJ, Milosevic J, Li H, Busse WW, Erzurum SC, Kaminski N, Wenzel SE, Meyers DA, Bleecker ER. eQTL of bronchial epithelial cells and bronchial alveolar lavage deciphers GWAS‐identified asthma genes. Allergy 2015, 70: 1309-1318. PMID: 26119467, PMCID: PMC4583797, DOI: 10.1111/all.12683.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAsthmaBronchoalveolar Lavage FluidCase-Control StudiesChromosome MappingEpithelial CellsFemaleGenetic Association StudiesGenetic Predisposition to DiseaseGenome-Wide Association StudyHumansImmunoglobulin EMaleOrgan SpecificityPolymorphism, Single NucleotideQuantitative Trait LociRespiratory Function TestsRespiratory MucosaConceptsExpression quantitative trait lociGenome-wide association studiesSingle nucleotide polymorphismsAsthma genesQuantitative trait lociGenes/single-nucleotide polymorphismsCis-eQTL analysisFurther functional studiesDisease-relevant tissuesDecreased expressionTrait lociCausal genesTranscription analysisGene expressionPromoter regionAsthma-related genesAssociation studiesBronchial epithelial cellsProtein secretionGenesFunctional studiesNucleotide polymorphismsSpecific regulationExpression levelsExpression of IL33
2014
Future Directions in Idiopathic Pulmonary Fibrosis Research. An NHLBI Workshop Report
Blackwell TS, Tager AM, Borok Z, Moore BB, Schwartz DA, Anstrom KJ, Bar-Joseph Z, Bitterman P, Blackburn MR, Bradford W, Brown KK, Chapman HA, Collard HR, Cosgrove GP, Deterding R, Doyle R, Flaherty KR, Garcia CK, Hagood JS, Henke CA, Herzog E, Hogaboam CM, Horowitz JC, King TE, Loyd JE, Lawson WE, Marsh CB, Noble PW, Noth I, Sheppard D, Olsson J, Ortiz LA, O’Riordan T, Oury TD, Raghu G, Roman J, Sime PJ, Sisson TH, Tschumperlin D, Violette SM, Weaver TE, Wells RG, White ES, Kaminski N, Martinez FJ, Wynn TA, Thannickal VJ, Eu JP. Future Directions in Idiopathic Pulmonary Fibrosis Research. An NHLBI Workshop Report. American Journal Of Respiratory And Critical Care Medicine 2014, 189: 214-222. PMID: 24160862, PMCID: PMC3983890, DOI: 10.1164/rccm.201306-1141ws.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsIdiopathic pulmonary fibrosisAlveolar epithelial injuryEffective medical therapyRole of inflammationTime of diagnosisPatient advocacy groupsMedian survivalMedical therapyEpithelial injuryPulmonary fibrosisPulmonary fibrosis researchIPF therapyIPF researchPreclinical modelingDrug AdministrationPatient communityU.S. FoodNHLBITranslation of discoveriesClinical researchersPatientsFibrosis researchTherapyDiseaseAberrant repair
2008
Oxidative Stress Alters Syndecan-1 Distribution in Lungs with Pulmonary Fibrosis*
Kliment CR, Englert JM, Gochuico BR, Yu G, Kaminski N, Rosas I, Oury TD. Oxidative Stress Alters Syndecan-1 Distribution in Lungs with Pulmonary Fibrosis*. Journal Of Biological Chemistry 2008, 284: 3537-3545. PMID: 19073610, PMCID: PMC2635035, DOI: 10.1074/jbc.m807001200.Peer-Reviewed Original ResearchConceptsIdiopathic pulmonary fibrosisPulmonary fibrosisLavage fluidNeutrophil chemotaxisSyndecan-1EC-SODSyndecan-1 ectodomainWound healingMouse lungNull miceWestern blotOxidative stressInterstitial lung diseaseBronchoalveolar lavage fluidShed syndecan-1Aberrant wound healingAlveolar epithelial cellsHuman lung samplesHuman syndecan-1Extracellular superoxide dismutaseEpithelial wound healingIPF lungsProgressive fibrosisLung fibrosisAlveolar epithelial wound healingMolecular Staging of Epithelial Maturation Using Secretory Cell–Specific Genes as Markers
Zemke AC, Snyder JC, Brockway BL, Drake JA, Reynolds SD, Kaminski N, Stripp BR. Molecular Staging of Epithelial Maturation Using Secretory Cell–Specific Genes as Markers. American Journal Of Respiratory Cell And Molecular Biology 2008, 40: 340-348. PMID: 18757308, PMCID: PMC2645532, DOI: 10.1165/rcmb.2007-0380oc.Peer-Reviewed Original ResearchConceptsCell-specific genesCategories of genesUnique gene expression profileDevelopmental expression patternsSecretory cellsGene expression profilesCell marker genesExpression of FMO3Messenger RNA abundanceUnique developmental expression patternTransgenic approachesClara cell markerRNA abundanceMarker genesClara cellsExpression patternsExpression profilesMolecular markersEpithelial maturationPhenotypic changesFlavin monooxygenase 3GenesTemporal inductionBronchiolar Clara cellsEmbryonic day
2001
Interleukin-13 Induces Dramatically Different Transcriptional Programs in Three Human Airway Cell Types
Lee J, Kaminski N, Dolganov G, Grunig G, Koth L, Solomon C, Erle D, Sheppard D. Interleukin-13 Induces Dramatically Different Transcriptional Programs in Three Human Airway Cell Types. American Journal Of Respiratory Cell And Molecular Biology 2001, 25: 474-485. PMID: 11694453, DOI: 10.1165/ajrcmb.25.4.4522.Peer-Reviewed Original ResearchMeSH KeywordsCells, CulturedEndopeptidasesExtracellular Matrix ProteinsFibroblastsGene Expression RegulationHumansInterleukin-13Ion ChannelsMuscle, SmoothOligonucleotide Array Sequence AnalysisProtease InhibitorsRespiratory MucosaRespiratory SystemSignal TransductionSTAT6 Transcription FactorTrans-ActivatorsTranscription, GeneticConceptsAirway cell typesIL-13Airway epithelial cellsAirway cellsAirway smooth muscle cellsPhenotypic featuresInterleukin-13 inducesResident airway cellsEpithelial cellsImmediate hypersensitivity responsesAirway smooth muscleDevelopment of asthmaCell typesSmooth muscle cellsHypersensitivity responseT lymphocytesSmooth muscleAsthmaB lymphocytesLung fibroblastsMuscle cellsVivo responseCentral mediatorGene expressionPrimary cultures