2019
A non-enzymatic method for dissection of mouse bladder urothelial tissue.
Lu M, Zhu K, Schulam PG, Chai TC. A non-enzymatic method for dissection of mouse bladder urothelial tissue. Nature Protocols 2019, 14: 1280-1292. PMID: 30894693, DOI: 10.1038/s41596-019-0142-x.Peer-Reviewed Original ResearchBladder urothelial BK channel activity is a critical mediator for innate immune response in urinary tract infection pathogenesis
Yeh J, Lu M, Alvarez-Lugo L, Chai TC. Bladder urothelial BK channel activity is a critical mediator for innate immune response in urinary tract infection pathogenesis. American Journal Of Physiology. Renal Physiology 2019, 316: f617-f623. PMID: 30648906, DOI: 10.1152/ajprenal.00554.2018.Peer-Reviewed Original ResearchConceptsUrinary tract infectionInnate immune responseImmune responseBK channel activityUrinary tract infection pathogenesisChannel activityFemale C57BL/6 miceInflammatory protein-2Voltage-gated potassium channelsUropathogenic Escherichia coliInhibitor iberiotoxinUPEC exposureUTI pathogenesisInflammatory biomarkersTract infectionsC57BL/6 miceIL-6Urinary biomarkersUrinary changesBiomarker levelsInfection pathogenesisUrine specimensProtein 10LPS inoculationSame biomarkers
2018
Mouse urothelial genes associated with voiding behavior changes after ovariectomy and bladder lipopolysaccharide exposure
Acevedo‐Alvarez M, Yeh J, Alvarez‐Lugo L, Lu M, Sukumar N, Hill WG, Chai TC. Mouse urothelial genes associated with voiding behavior changes after ovariectomy and bladder lipopolysaccharide exposure. Neurourology And Urodynamics 2018, 37: 2398-2405. PMID: 29682797, DOI: 10.1002/nau.23592.Peer-Reviewed Original ResearchConceptsUrinary tract infectionOveractive bladderOVX miceVoiding behaviorFemale C57BL6/J miceC57BL6/J micePost-menopausal womenEffects of ovariectomyBehavior changeMicturition changesTransurethral instillationLPS instillationTract infectionsSham surgeryLPS exposureJ miceCOX-2OVX surgeryDay 1Day 3Consecutive daysSurgeryMiceSpot assayGene expression changesLipopolysaccharide stimulates BK channel activity in bladder umbrella cells
Lu M, Li JR, Alvarez-Lugo L, Li Y, Yu S, Li X, Shi B, Chai TC. Lipopolysaccharide stimulates BK channel activity in bladder umbrella cells. American Journal Of Physiology - Cell Physiology 2018, 314: c643-c653. PMID: 29466671, DOI: 10.1152/ajpcell.00339.2017.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCyclic AMP-Dependent Protein KinasesFemaleLarge-Conductance Calcium-Activated Potassium Channel alpha SubunitsLipopolysaccharide ReceptorsLipopolysaccharidesLymphocyte Antigen 96Membrane PotentialsMice, Inbred C57BLPatch-Clamp TechniquesPotassiumSignal TransductionToll-Like Receptor 4Urinary BladderUrinary Tract InfectionsUrotheliumConceptsBK channel activityBK channelsChannel activityUmbrella cellsUrinary tract infectionFemale C57BL6 micePotassium channel inhibitorsUropathogenic Escherichia coliProtein kinase ATract infectionsLPS effectsC57BL6 miceBladder urotheliumLamina propriaMin of exposureChannel inhibitorsBacterial infectionsLPS receptorUrothelial tissuesUrothelial cellsUrotheliumLipopolysaccharidePotassium channelsRT-PCRPKA blocker
2017
MP82-07 UROTHELIAL GENES MODULATING MICTURITION BEHAVIOR INDUCED BY A REPETITIVE LIPOPOLYSACCHARIDE (LPS) EXPOSURE IN AN OVARIECTOMIZED (OVX) MOUSE MODEL
Acevedo-Alvarez M, Yeh J, Alvarez-Lugo L, Lu M, Sukumar N, Hill W, Chai T. MP82-07 UROTHELIAL GENES MODULATING MICTURITION BEHAVIOR INDUCED BY A REPETITIVE LIPOPOLYSACCHARIDE (LPS) EXPOSURE IN AN OVARIECTOMIZED (OVX) MOUSE MODEL. Journal Of Urology 2017, 197: e1099. DOI: 10.1016/j.juro.2017.02.2554.Peer-Reviewed Original ResearchPD12-05 BIG POTASSIUM CHANNEL (BK) ACTIVITY IN FEMALE MOUSE BLADDER UMBRELLA CELLS IS ENHANCED BY BACTERIAL LIPOPOLYSACCHARIDE: AN ACUTE HOST RESPONSE IN URINARY TRACT INFECTION (UTI) PATHOGENESIS
Lu M, Li J, Li Y, Yu S, Chai T. PD12-05 BIG POTASSIUM CHANNEL (BK) ACTIVITY IN FEMALE MOUSE BLADDER UMBRELLA CELLS IS ENHANCED BY BACTERIAL LIPOPOLYSACCHARIDE: AN ACUTE HOST RESPONSE IN URINARY TRACT INFECTION (UTI) PATHOGENESIS. Journal Of Urology 2017, 197: e267. DOI: 10.1016/j.juro.2017.02.680.Peer-Reviewed Original Research
2016
Granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) is released by female mouse bladder urothelial cells and expressed by the urothelium as an early response to lipopolysaccharides (LPS)
Li Y, Lu M, Alvarez‐Lugo L, Chen G, Chai TC. Granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) is released by female mouse bladder urothelial cells and expressed by the urothelium as an early response to lipopolysaccharides (LPS). Neurourology And Urodynamics 2016, 36: 1020-1025. PMID: 27337494, DOI: 10.1002/nau.23057.Peer-Reviewed Original ResearchConceptsBladder urotheliumCyclooxygenase-2GM-CSFCyclooxygenase-1GM-CSFRαBladder tissueMRNA expressionTumor necrosis factor αCOX-2 mRNA expressionVivo LPS exposureVascular endothelial growth factorNecrosis factor αDose-dependent releaseIncrease of VEGFGranulocyte-macrophage colony-stimulating factor (GM-CSF) signalingBladder urothelial cellsConcentrations of lipopolysaccharideGM-CSF mRNA expressionEndothelial growth factorGM-CSF antibodyMouse bladder urotheliumGM-CSF activityLPS exposurePain transductionSingle doseRomk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion*
Dong K, Yan Q, Lu M, Wan L, Hu H, Guo J, Boulpaep E, Wang W, Giebisch G, Hebert SC, Wang T. Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion*. Journal Of Biological Chemistry 2016, 291: 5259-5269. PMID: 26728465, PMCID: PMC4777858, DOI: 10.1074/jbc.m115.707877.Peer-Reviewed Original Research
2015
Mucosal signaling in the bladder
Chai TC, Russo A, Yu S, Lu M. Mucosal signaling in the bladder. Autonomic Neuroscience 2015, 200: 49-56. PMID: 26422993, DOI: 10.1016/j.autneu.2015.08.009.Peer-Reviewed Original ResearchConceptsElectrical field stimulationLamina propriaNerve fibersMuscularis mucosaeNeural activitySpontaneous electrical activityNon-neuronal cellsSmooth muscle fibersMucosal contractionEfferent nervesBladder disordersAutonomic nervesAfferent activityBladder mucosaField stimulationHigh prevalenceMucosaStretch stimulusUrothelial cellsNerveElectrical activityMuscle fibersLuminal sideUrotheliumMultilayered urothelium
2012
SeSAME/EAST syndrome—phenotypic variability and delayed activity of the distal convoluted tubule
Scholl UI, Dave HB, Lu M, Farhi A, Nelson-Williams C, Listman JA, Lifton RP. SeSAME/EAST syndrome—phenotypic variability and delayed activity of the distal convoluted tubule. Pediatric Nephrology 2012, 27: 2081-2090. PMID: 22907601, DOI: 10.1007/s00467-012-2219-4.Peer-Reviewed Original ResearchMeSH KeywordsAbsorptionAge FactorsBiomarkersChildDNA Mutational AnalysisElectrolytesFemaleGenetic Predisposition to DiseaseHearing Loss, SensorineuralHEK293 CellsHomozygoteHumansInfantIntellectual DisabilityKidney Tubules, DistalMaleMembrane PotentialsMicroscopy, ConfocalMutationPedigreePhenotypePotassium Channels, Inwardly RectifyingPredictive Value of TestsSeizuresTransfectionConceptsGitelman syndromeAutosomal recessive syndromeRenal featuresElectrolyte disordersHypokalemic alkalosisClinical presentationElectrolyte imbalanceMedical recordsSignificant worseningBiochemical lossSensorineural deafnessSalt reabsorptionConclusionsThese findingsRecessive syndromeSimilar findingsSyndromeAge 5Mental retardationUnreported familiesSeizuresChannel functionAgeAffected membersFirst yearTubules
2010
Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA–regulated apical chloride channels in cortical collecting duct
Lu M, Dong K, Egan ME, Giebisch GH, Boulpaep EL, Hebert SC. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA–regulated apical chloride channels in cortical collecting duct. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 6082-6087. PMID: 20231442, PMCID: PMC2851921, DOI: 10.1073/pnas.0902661107.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBenzoatesChloride ChannelsCyclic AMPCyclic AMP-Dependent Protein KinasesCystic Fibrosis Transmembrane Conductance RegulatorFemaleIn Vitro TechniquesKidney CortexKidney Tubules, CollectingKineticsMiceMice, Inbred C57BLMice, Inbred CFTRMice, KnockoutMice, TransgenicMutationOocytesPatch-Clamp TechniquesPotassium Channels, Inwardly RectifyingRecombinant ProteinsThiazolidinesXenopus laevisConceptsCystic fibrosis transmembrane conductance regulatorFibrosis transmembrane conductance regulatorTransmembrane conductance regulatorCl- channel activityConductance regulatorCl- channelsApical membrane proteinsExpression of CFTRChannel activityCFTR Cl- channelApical chloride channelApical cell membraneDeltaF508 CFTR mutationMembrane proteinsCatalytic subunitXenopus laevis oocytesForm proteinPrincipal cellsCFTR channelsROMK null miceApical patchesApical membraneSingle-channel conductanceChloride channelsCell membrane
2006
CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney
Lu M, Leng Q, Egan ME, Caplan MJ, Boulpaep EL, Giebisch GH, Hebert SC. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney. Journal Of Clinical Investigation 2006, 116: 797-807. PMID: 16470247, PMCID: PMC1361349, DOI: 10.1172/jci26961.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsCurcuminCyclic AMP-Dependent Protein KinasesCystic Fibrosis Transmembrane Conductance RegulatorHydrogen-Ion ConcentrationKidneyMiceMice, Inbred C57BLMice, Inbred CFTRMice, TransgenicMutationOocytesPatch-Clamp TechniquesPotassium Channels, Inwardly RectifyingXenopus laevisConceptsFunctional switchCystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channelATP sensitivityEffects of CFTRThick ascending limbPotential physiological rolePKA activityRenal K channelsCystic fibrosisPhysiological roleSecretory channelsK channelsRenal tubule epithelial cellsApical membraneCFTRDeltaF508 mutationDistal nephron segmentsCl- channelsK homeostasisTubule epithelial cellsEpithelial cellsTAL cellsPotassium channelsK handlingGlibenclamide sensitivity
2003
ROMK is required for expression of the 70-pS K channel in the thick ascending limb
Lu M, Wang T, Yan Q, Wang W, Giebisch G, Hebert SC. ROMK is required for expression of the 70-pS K channel in the thick ascending limb. American Journal Of Physiology. Renal Physiology 2003, 286: f490-f495. PMID: 14600033, DOI: 10.1152/ajprenal.00305.2003.Peer-Reviewed Original ResearchConceptsThick ascending limbBartter's syndromeK dietK channelsAscending limbChannel activityApical K channelsFunctional expressionHypokalemic alkalosisTAL cellsNull miceSK activityHeterozygous miceHeterogeneous disorderMicePotassium recyclingROMKFunction mutationsSyndromeCritical subunitApical conductanceSalt absorptionLimbDietExpression
2002
Hydrolyzable ATP and PIP2 Modulate the Small-conductance K+ Channel in Apical Membranes of Rat Cortical-Collecting Duct (CCD)
Lu M, Hebert SC, Giebisch G. Hydrolyzable ATP and PIP2 Modulate the Small-conductance K+ Channel in Apical Membranes of Rat Cortical-Collecting Duct (CCD). The Journal Of General Physiology 2002, 120: 603-615. PMID: 12407074, PMCID: PMC2229550, DOI: 10.1085/jgp.20028677.Peer-Reviewed Original ResearchMeSH Keywords1-Phosphatidylinositol 4-KinaseAdenosine TriphosphateAnimalsCell MembraneCyclic AMP-Dependent Protein KinasesElectrophysiologyHydrolysisKidney CortexKidney Tubules, CollectingKineticsMembrane PotentialsPatch-Clamp TechniquesPhosphatidylinositol 4,5-DiphosphatePhosphorylationPotassium ChannelsPotassium Channels, Inwardly RectifyingProtein Interaction MappingRatsRats, Sprague-DawleyAbsence of Small Conductance K+ Channel (SK) Activity in Apical Membranes of Thick Ascending Limb and Cortical Collecting Duct in ROMK (Bartter's) Knockout Mice*
Lu M, Wang T, Yan Q, Yang X, Dong K, Knepper MA, Wang W, Giebisch G, Shull GE, Hebert SC. Absence of Small Conductance K+ Channel (SK) Activity in Apical Membranes of Thick Ascending Limb and Cortical Collecting Duct in ROMK (Bartter's) Knockout Mice*. Journal Of Biological Chemistry 2002, 277: 37881-37887. PMID: 12130653, PMCID: PMC4426997, DOI: 10.1074/jbc.m206644200.Peer-Reviewed Original ResearchMeSH KeywordsAgingAnimalsBartter SyndromeBase SequenceCell MembraneDisease Models, AnimalDNA PrimersGene Expression RegulationGenotypeHumansKidneyKidney CortexKidney Tubules, CollectingMiceMice, KnockoutPotassium ChannelsPotassium Channels, Calcium-ActivatedPotassium Channels, Inwardly RectifyingPotassium ChlorideSmall-Conductance Calcium-Activated Potassium ChannelsSurvival AnalysisConceptsThick ascending limbSK channel activityROMK null miceBartter's syndromeNull miceSK channelsAscending limbChannel activityExtracellular volume depletionROMK geneCortical collecting ductsWild-type littermatesAbsorption/secretionROMK knockout miceNull mice exhibitPatch-clamp analysisSmall conductanceSignificant hydronephrosisRenal morphologyVolume depletionKnockout miceMice exhibitSyndromeCollecting ductsNaCl reabsorptionThe Carboxyl Termini of KATP Channels Bind Nucleotides*
Vanoye CG, MacGregor GG, Dong K, Tang L, Buschmann AS, Hall AE, Lu M, Giebisch G, Hebert SC. The Carboxyl Termini of KATP Channels Bind Nucleotides*. Journal Of Biological Chemistry 2002, 277: 23260-23270. PMID: 11956191, DOI: 10.1074/jbc.m112004200.Peer-Reviewed Original Research
2001
Ca2+ mediates the effect of inhibition of Na+-K+-ATPase on the basolateral K+ channels in the rat CCD
Wei Y, Lu M, Wang W. Ca2+ mediates the effect of inhibition of Na+-K+-ATPase on the basolateral K+ channels in the rat CCD. American Journal Of Physiology - Cell Physiology 2001, 280: c920-c928. PMID: 11245609, DOI: 10.1152/ajpcell.2001.280.4.c920.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBenzylaminesBiological TransportCalciumCalcium-Calmodulin-Dependent Protein KinasesDose-Response Relationship, DrugEnzyme InhibitorsFemaleIon Channel GatingIonomycinIonophoresKidney Tubules, CollectingMaleMembrane PotentialsNaphthalenesNG-Nitroarginine Methyl EsterNitratesPotassium ChannelsProtein Kinase CRatsRats, Sprague-DawleySodium-Potassium-Exchanging ATPaseSpecific Pathogen-Free OrganismsStrophanthidinSulfonamidesSuperoxidesConceptsNitro-L-arginine methyl esterIntracellular Ca2Inhibitory effectNM Ca2Nitric oxideChannel activityEffects of strophanthidinKN-93KN-62Protein kinase CCalphostin CEffect of inhibitionCalmodulin-dependent kinase IICell-attached patchesExtracellular Ca2Rat CCDKinase CMicroM ionomycinRat kidneyMechanism of Ca2High concentrationsStrophanthidinCa2Methyl esterKinase II
2000
Extracellular Atp Inhibits the Small-Conductance K Channel on the Apical Membrane of the Cortical Collecting Duct from Mouse Kidney
Lu M, MacGregor G, Wang W, Giebisch G. Extracellular Atp Inhibits the Small-Conductance K Channel on the Apical Membrane of the Cortical Collecting Duct from Mouse Kidney. The Journal Of General Physiology 2000, 116: 299-310. PMID: 10919872, PMCID: PMC2229488, DOI: 10.1085/jgp.116.2.299.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAffinity LabelsAlkaloidsAnimalsCarbazolesColforsinCyclic AMPCyclic AMP-Dependent Protein KinasesCyclic GMP-Dependent Protein KinasesEnzyme InhibitorsExtracellular SpaceIndolesIon Channel GatingKidney Tubules, CollectingMembrane PotentialsMiceMice, Inbred C57BLNaphthalenesNG-Nitroarginine Methyl EsterOkadaic AcidPatch-Clamp TechniquesPhosphoprotein PhosphatasesPhosphorylationPotassiumPotassium ChannelsPotassium Channels, Calcium-ActivatedProtein KinasesRatsRats, Sprague-DawleyReceptors, PurinergicSmall-Conductance Calcium-Activated Potassium ChannelsThionucleotidesUridine TriphosphateConceptsApical membraneChannel activityProtein kinase AProtein kinase C.Protein phosphatasePurinergic receptor stimulationSmall-conductance potassium channelsOkadaic acidExtracellular ATP concentrationKinase AKinase C.Addition of ATPG proteinsRat homologuePhospholipase CPhosphatase activitySK activitySmall-conductance K channelsApical receptorsATP inhibitsSingle-channel analysisATPNucleotide sensitivityApical K channelsK channelsTwo Types of K+ Channels are Present in the Apical Membrane of the Thick Ascending Limb of the Mouse Kidney
Lu M, Wang W. Two Types of K+ Channels are Present in the Apical Membrane of the Thick Ascending Limb of the Mouse Kidney. Kidney & Blood Pressure Research 2000, 23: 75-82. PMID: 10765108, DOI: 10.1159/000025957.Peer-Reviewed Original ResearchAdenosine TriphosphateAnimalsBariumBiophysical PhenomenaBiophysicsCell MembraneCytosolElectrophysiologyIntermediate-Conductance Calcium-Activated Potassium ChannelsKidneyMembrane PotentialsMicePatch-Clamp TechniquesPotassium Channel BlockersPotassium ChannelsPotassium Channels, Calcium-ActivatedSmall-Conductance Calcium-Activated Potassium ChannelsTetraethylammonium
1998
Neuronal nitric oxide synthase is expressed in principal cell of collecting duct
Wang X, Lu M, Gao Y, Papapetropoulos A, Sessa W, Wang W. Neuronal nitric oxide synthase is expressed in principal cell of collecting duct. American Journal Of Physiology 1998, 275: f395-f399. PMID: 9729512, DOI: 10.1152/ajprenal.1998.275.3.f395.Peer-Reviewed Original ResearchConceptsNeuronal nitric oxide synthaseEndothelial nitric oxide synthasePresence of nNOSNitric oxide synthaseOxide synthasePrincipal cellsImmunocytochemical studyPresence of mRNART-PCR techniqueRat neuronal nitric oxide synthaseNegative immunostainingNNOS antibodyRat CCDRat kidneyImmunocytochemical methodsRT-PCRImmunoreactivityRatsDietCellsLight microscopyDuctSynthaseGene-specific primersKidney