2024
Neuropeptide and serotonin co-transmission sets the activity pattern in the C. elegans egg-laying circuit
Butt A, Van Damme S, Santiago E, Olson A, Beets I, Koelle M. Neuropeptide and serotonin co-transmission sets the activity pattern in the C. elegans egg-laying circuit. Current Biology 2024, 34: 4704-4714.e5. PMID: 39395419, DOI: 10.1016/j.cub.2024.07.064.Peer-Reviewed Original ResearchHermaphrodite-specific neuronsEgg-laying circuitNlp-3Egg layingTiming of egg layingPromote egg layingCaenorhabditis elegansInactive phasePeptide signalsPersistent internal stateNeural circuit functionMolecular experimentsSerotonin receptorsSerotonin signalingSerotoninMuscle cellsNeurotransmitter serotoninMultiple signalsNeuropeptideNeuropeptide receptorsCo-transmissionEggsNeural circuitsLayingActive phaseThe Caenorhabditis elegans protein SOC-3 permits an alternative mode of signal transduction by the EGL-15 FGF receptor
Rodriguez Torres C, Wicker N, Puccini de Castro V, Stefinko M, Bennett D, Bernhardt B, Garcia Montes de Oca M, Jallow S, Flitcroft K, Palalay J, Payán Parra O, Stern Y, Koelle M, Voisine C, Woods I, Lo T, Stern M, de la Cova C. The Caenorhabditis elegans protein SOC-3 permits an alternative mode of signal transduction by the EGL-15 FGF receptor. Developmental Biology 2024, 516: 183-195. PMID: 39173814, PMCID: PMC11488645, DOI: 10.1016/j.ydbio.2024.08.014.Peer-Reviewed Original ResearchC-terminal domainEGL-15MPK-1 activationSex myoblastsSem-5CLR-1SOC-1Regulating animal developmentMode of signal transductionPTP-2Cell signaling modulatorsCell-specific differencesRAS pathway activationTissue-specific mechanismsMPK-1IRS proteinsAnimal developmentSOC-3Homeostasis defectsCaenorhabditis elegansGenetic screeningHyp7Kinase RafSignal transductionFGF signaling
2023
Multiple Subthreshold GPCR Signals Combined by the G-Proteins Gαq and Gαs Activate the Caenorhabditis elegans Egg-Laying Muscles
Olson A, Butt A, Christie N, Shelar A, Koelle M. Multiple Subthreshold GPCR Signals Combined by the G-Proteins Gαq and Gαs Activate the Caenorhabditis elegans Egg-Laying Muscles. Journal Of Neuroscience 2023, 43: 3789-3806. PMID: 37055179, PMCID: PMC10219013, DOI: 10.1523/jneurosci.2301-22.2023.Peer-Reviewed Original ResearchConceptsG protein-coupled receptorsMultiple G protein-coupled receptorsMuscle cellsMuscle activitySerotonin G protein-coupled receptorsDesigner G protein-coupled receptorsIntact animalsG proteinsEndogenous G protein-coupled receptorsIndividual G protein-coupled receptorsGPCR signalsCalcium activityEgg-laying musclesSerotoninIndividual neuronsDouble knockoutNeuronsBehavioral outcomesMuscleMost cellsG protein GαqCellsSubthreshold signalEgg-laying systemSER-1
2022
Using NeuroPAL Multicolor Fluorescence Labeling to Identify Neurons in C. elegans
Santiago E, Shelar A, Christie N, Lewis‐Hayre M, Koelle M. Using NeuroPAL Multicolor Fluorescence Labeling to Identify Neurons in C. elegans. Current Protocols 2022, 2: e610. PMID: 36521003, PMCID: PMC10257892, DOI: 10.1002/cpz1.610.Peer-Reviewed Original ResearchHorvitz, H. Robert
Koelle M. Horvitz, H. Robert. 2022 DOI: 10.1016/b978-0-12-822563-9.00005-6.ChaptersModel organism Caenorhabditis elegansForward genetic analysisOrganism Caenorhabditis elegansCaenorhabditis elegansGenetic analysisCell lineagesCell deathNormal developmentBiological researchHorvitzDisease statesAmyotrophic lateral sclerosisElegansLineagesLateral sclerosisGeneticsPhysiologyNobel PrizeCells
2021
The neural G protein Gαo tagged with GFP at an internal loop is functional in Caenorhabditis elegans
Kumar S, Olson AC, Koelle MR. The neural G protein Gαo tagged with GFP at an internal loop is functional in Caenorhabditis elegans. G3: Genes, Genomes, Genetics 2021, 11: jkab167. PMID: 34003969, PMCID: PMC8496287, DOI: 10.1093/g3journal/jkab167.Peer-Reviewed Original ResearchConceptsGreen fluorescent proteinCaenorhabditis elegansGenetic analysisHeterotrimeric G proteinsG protein GαoInternal loopC. elegansProtein complexesBiochemical purificationEpitope tagPlasma membraneAlpha subunitMolecular mechanismsFluorescent proteinGenetic studiesElegansGαoG proteinsEgg layingTransgenic expressionBiochemical studiesGαo proteinsBody morphologyProteinNeurotransmitter release
2020
Cellular Expression and Functional Roles of All 26 Neurotransmitter GPCRs in the C. elegans Egg-Laying Circuit
Fernandez RW, Wei K, Wang EY, Mikalauskaite D, Olson A, Pepper J, Christie N, Kim S, Weissenborn S, Sarov M, Koelle MR. Cellular Expression and Functional Roles of All 26 Neurotransmitter GPCRs in the C. elegans Egg-Laying Circuit. Journal Of Neuroscience 2020, 40: 7475-7488. PMID: 32847964, PMCID: PMC7511189, DOI: 10.1523/jneurosci.1357-20.2020.Peer-Reviewed Original ResearchConceptsEgg-laying circuitNeurotransmitter GPCREgg-laying defectsModel organismsNeural circuitsExtrasynaptic signalsStandard laboratory conditionsSuch signalingGPCR expressionCell typesFunctional roleGPCRsNeurotransmitter signalsCellular expressionActivity of neuronsModel systemEpithelial cellsReceptor functionOrganismsNeurotransmitter receptorsLaboratory conditionsDistinct receptorsReceptor knockoutParkinson's diseaseCells
2019
The protein kinase G orthologs, EGL-4 and PKG-2, mediate serotonin-induced paralysis of C. elegans
Olson A, Koelle M. The protein kinase G orthologs, EGL-4 and PKG-2, mediate serotonin-induced paralysis of C. elegans. MicroPublication Biology 2019, 2019: 10.17912/micropub.biology.000115. PMID: 32550449, PMCID: PMC7252333, DOI: 10.17912/micropub.biology.000115.Peer-Reviewed Original ResearchSerotonin and neuropeptides are both released by the HSN command neuron to initiate C. elegans egg laying
Brewer JC, Olson AC, Collins KM, Koelle MR. Serotonin and neuropeptides are both released by the HSN command neuron to initiate C. elegans egg laying. PLOS Genetics 2019, 15: e1007896. PMID: 30677018, PMCID: PMC6363226, DOI: 10.1371/journal.pgen.1007896.Peer-Reviewed Original ResearchConceptsHermaphrodite-specific neuronsEgg-laying defectsNLP-3C. elegansEgg-laying musclesEgg-laying circuitDirect postsynaptic targetsEgg-laying behaviorSerotonergic Hermaphrodite Specific NeuronsMuscle cellsSmall molecule neurotransmittersNull mutantsHSN neuronsDouble mutantSingle mutantsMutant animalsSerotonergic neuronsWild-type animalsSevere defectsMutantsElegansNeuropeptide substance PMammalian brainEggsSpecific neurons
2018
Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans.
Koelle MR. Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. WormBook 2018, 2018: 1-52. PMID: 26937633, PMCID: PMC5010795, DOI: 10.1895/wormbook.1.75.2.Peer-Reviewed Original ResearchConceptsHeterotrimeric G proteinsC. elegansG proteinsRic-8 proteinsNew molecular componentsG protein signalingG alpha proteinsNeurotransmitter releaseGenetic screenMammalian orthologsSmall molecule neurotransmittersIndividual receptor typesProtein signalingReceptor homologG alphaElegansDistant cellsAlpha proteinAdditional GPCRsGenetic studiesIndividual neural circuitsGαMolecular componentsGαqGαo
2016
Neural Architecture of Hunger-Dependent Multisensory Decision Making in C. elegans
Ghosh DD, Sanders T, Hong S, McCurdy LY, Chase DL, Cohen N, Koelle MR, Nitabach MN. Neural Architecture of Hunger-Dependent Multisensory Decision Making in C. elegans. Neuron 2016, 92: 1049-1062. PMID: 27866800, PMCID: PMC5147516, DOI: 10.1016/j.neuron.2016.10.030.Peer-Reviewed Original ResearchActivity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition
Collins KM, Bode A, Fernandez RW, Tanis JE, Brewer JC, Creamer MS, Koelle MR. Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition. ELife 2016, 5: e21126. PMID: 27849154, PMCID: PMC5142809, DOI: 10.7554/elife.21126.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCaenorhabditis elegansCaenorhabditis elegans ProteinsChloride ChannelsCholineFeedback, PhysiologicalFemaleGene Expression RegulationLocomotionMotor NeuronsMuscle ContractionOptogeneticsOvipositionPeriodicityReceptors, Biogenic AmineSerotoninSexual Behavior, AnimalSignal TransductionTyramineConceptsPassage of eggsUnderlying neural circuitsUv1 neuroendocrine cellsCommand neuronsMuscle contractionNeural circuitsNeuroendocrine cellsRhythmic activityBehavior circuitsCircuit activityCentral pattern generatorCircuit functionBody bendsFeedback inhibitionSlow locomotionPattern generatorNeuronsActivityVulva
2015
Evolutionary Conservation of a GPCR-Independent Mechanism of Trimeric G Protein Activation
Coleman BD, Marivin A, Parag-Sharma K, DiGiacomo V, Kim S, Pepper JS, Casler J, Nguyen LT, Koelle MR, Garcia-Marcos M. Evolutionary Conservation of a GPCR-Independent Mechanism of Trimeric G Protein Activation. Molecular Biology And Evolution 2015, 33: 820-837. PMID: 26659249, PMCID: PMC4760084, DOI: 10.1093/molbev/msv336.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsAmino Acid SequenceAnimalsBiological EvolutionCaenorhabditis elegansCaenorhabditis elegans ProteinsEvolution, MolecularGene ExpressionGTP-Binding ProteinsGuanine Nucleotide Exchange FactorsModels, MolecularProtein BindingProtein ConformationProtein Interaction Domains and MotifsProtein MultimerizationReceptors, G-Protein-CoupledSignal TransductionConceptsGBA motifGEF activityG protein activationTrimeric G-protein signalingGuanine nucleotide exchange factor activityProtein activationG proteinsMammalian Gα subunitsG protein-mediated signalingMotif-containing proteinsGPCR-independent mechanismReceptor-independent G-protein activationExchange factor activityG protein signalingProtein-mediated signalingMammalian cell behaviorGOA-1Evolutionary conservationDivergent proteinsCaenorhabditis elegansBioinformatics searchGα subunitsMost invertebratesProtein signalingAccessory proteinsRNA ligation in neurons by RtcB inhibits axon regeneration
Kosmaczewski SG, Han SM, Han B, Meyer B, Baig HS, Athar W, Lin-Moore AT, Koelle MR, Hammarlund M. RNA ligation in neurons by RtcB inhibits axon regeneration. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: 8451-8456. PMID: 26100902, PMCID: PMC4500288, DOI: 10.1073/pnas.1502948112.Peer-Reviewed Original ResearchAn Evolutionarily Conserved Switch in Response to GABA Affects Development and Behavior of the Locomotor Circuit of Caenorhabditis elegans
Han B, Bellemer A, Koelle MR. An Evolutionarily Conserved Switch in Response to GABA Affects Development and Behavior of the Locomotor Circuit of Caenorhabditis elegans. Genetics 2015, 199: 1159-1172. PMID: 25644702, PMCID: PMC4391577, DOI: 10.1534/genetics.114.173963.Peer-Reviewed Original ResearchConceptsGamma-aminobutyric acidRigorous genetic analysisBody wall musclesNeural circuit developmentCaenorhabditis elegansL1 animalsDevelopmental switchGenetic analysisGABAergic neuronsGABA responsesVertebrate brainMammalian neuronsStage animalsNeurotransmitter gamma-aminobutyric acidWall musclesChloride transportersMajor inhibitory neurotransmitterMuscle targetsTransporter 1Muscimol responsesGABA neuronsLocomotor circuitsExcitatory responsesCircuit developmentAgonist muscimol
2013
Postsynaptic ERG Potassium Channels Limit Muscle Excitability to Allow Distinct Egg-Laying Behavior States in Caenorhabditis elegans
Collins KM, Koelle MR. Postsynaptic ERG Potassium Channels Limit Muscle Excitability to Allow Distinct Egg-Laying Behavior States in Caenorhabditis elegans. Journal Of Neuroscience 2013, 33: 761-775. PMID: 23303953, PMCID: PMC3542984, DOI: 10.1523/jneurosci.3896-12.2013.Peer-Reviewed Original ResearchConceptsEgg-laying musclesBody bendsUNC-103Caenorhabditis elegansCalcium transientsTwo-state behaviorERG potassium channelsMutantsERG channelsPotassium channelsInactive phaseEggsDistinct behavioral statesMuscle excitabilityPostsynaptic excitabilityPostsynaptic sitesERG functionCaenorhabditisCalcium imagingElegansFurther adjustmentExcitabilityRhythmic excitationMuscleBehavioral statesLIN-12/Notch signaling instructs postsynaptic muscle arm development by regulating UNC-40/DCC and MADD-2 in Caenorhabditis elegans
Li P, Collins KM, Koelle MR, Shen K. LIN-12/Notch signaling instructs postsynaptic muscle arm development by regulating UNC-40/DCC and MADD-2 in Caenorhabditis elegans. ELife 2013, 2: e00378. PMID: 23539368, PMCID: PMC3601818, DOI: 10.7554/elife.00378.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedCaenorhabditis elegansCaenorhabditis elegans ProteinsCalcium SignalingCell Adhesion MoleculesFemaleGenotypeIntracellular Signaling Peptides and ProteinsMorphogenesisMuscle ContractionMusclesMutationNeurogenesisOvipositionParacrine CommunicationPhenotypeReceptors, NotchSignal TransductionSodium ChannelsSynapsesVulvaConceptsPrecise synaptic connectivityNon-target musclesForm synapsesMADD-2Types of musclePresynaptic neuronsSynaptic targetsSynaptic connectivityCardinal featuresNervous systemGuidance moleculesTarget cellsLIN-12/NotchUNC-40/DCCMuscleCell typesArm extensionCellsMuscle armsEctopic expressionDiverse cell typesDCCArmExpressionNeurons
2012
Receptors and Other Signaling Proteins Required for Serotonin Control of Locomotion in Caenorhabditis elegans
Gürel G, Gustafson MA, Pepper JS, Horvitz HR, Koelle MR. Receptors and Other Signaling Proteins Required for Serotonin Control of Locomotion in Caenorhabditis elegans. Genetics 2012, 192: 1359-1371. PMID: 23023001, PMCID: PMC3512144, DOI: 10.1534/genetics.112.142125.Peer-Reviewed Original ResearchConceptsCaenorhabditis elegansLarge-scale genetic screensSer-4Direct postsynaptic targetsGenetic screenC. elegansSignaling proteinsGenetic systemNon-overlapping setsAdditional proteinsExtrasynaptic signalsMolecular mechanismsElegansSerotonin responseGenesRelease sitesMod 1Multiple receptorsProteinSerotonin controlSerotonergic neuronsPostsynaptic targetsSerotonin functionReceptorsSerotonin receptorsThe G protein regulator AGS-3 allows C. elegans to alter behaviors in response to food deprivation
Hofler C, Koelle MR. The G protein regulator AGS-3 allows C. elegans to alter behaviors in response to food deprivation. Worm 2012, 1: 56-60. PMID: 24058824, PMCID: PMC3670173, DOI: 10.4161/worm.19042.Peer-Reviewed Original ResearchC. elegansAGS-3Genetic model organismRIC-8Model organismsMolecular mechanismsElegansG proteinsBehavioral responsesFood deprivationO familyGαoProteinNervous system functionBiochemical changesNeural responsesBrain actRecent studiesFood-seeking behaviorHuman obesityFood restrictionOrganismsSpeciesDeprivationObesity
2011
AGS-3 Alters Caenorhabditis elegans Behavior after Food Deprivation via RIC-8 Activation of the Neural G Protein Gαo
Hofler C, Koelle MR. AGS-3 Alters Caenorhabditis elegans Behavior after Food Deprivation via RIC-8 Activation of the Neural G Protein Gαo. Journal Of Neuroscience 2011, 31: 11553-11562. PMID: 21832186, PMCID: PMC3161416, DOI: 10.1523/jneurosci.2072-11.2011.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, Genetically ModifiedCaenorhabditis elegansCaenorhabditis elegans ProteinsCells, CulturedDrosophilaFood DeprivationGTP-Binding Protein alpha Subunits, Gi-GoGuanine Nucleotide Dissociation InhibitorsGuanine Nucleotide Exchange FactorsHumansNeuronsNuclear ProteinsProtein BindingSignal TransductionConceptsAGS-3GPR proteinsG proteinsGenetic epistasis experimentsG protein GαoRegulator domainGPR domainEpistasis experimentsBiochemical fractionationChemosensory neuronsBiological functionsBiological roleFood deprivationProteinCaenorhabditisDependent fashionFood-deprived animalsActivationVivoGαoGTPDomainAnimalsNeuronsDeprivation