2018
Newly synthesized polycystin‐1 takes different trafficking pathways to the apical and ciliary membranes
Gilder AL, Chapin HC, Padovano V, Hueschen CL, Rajendran V, Caplan MJ. Newly synthesized polycystin‐1 takes different trafficking pathways to the apical and ciliary membranes. Traffic 2018, 19: 933-945. PMID: 30125442, PMCID: PMC6237641, DOI: 10.1111/tra.12612.Peer-Reviewed Original ResearchConceptsPolycystin-1Ciliary deliveryBrefeldin AApical deliveryRenal epithelial cellsN-terminal fragmentPolycystin-2LLC-PK1 renal epithelial cellsDifferent trafficking pathwaysTrans-Golgi networkApical membraneEpithelial cellsCultured epithelial cellsTrafficking pathwaysTransmembrane proteinGolgi compartmentPrimary ciliaC-terminal fragmentCiliary membraneC-terminusAutocatalytic cleavageDistinct pathwaysIncubating cellsCell membraneAutosomal dominant polycystic kidney disease
2015
Akt Substrate of 160 kD Regulates Na+,K+-ATPase Trafficking in Response to Energy Depletion and Renal Ischemia
Alves DS, Thulin G, Loffing J, Kashgarian M, Caplan MJ. Akt Substrate of 160 kD Regulates Na+,K+-ATPase Trafficking in Response to Energy Depletion and Renal Ischemia. Journal Of The American Society Of Nephrology 2015, 26: 2765-2776. PMID: 25788531, PMCID: PMC4625659, DOI: 10.1681/asn.2013101040.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiotinylationCell LineCytoplasmDogsDynaminsEndocytosisEpithelial CellsGTPase-Activating ProteinsHumansIschemiaKidneyKidney DiseasesMadin Darby Canine Kidney CellsMaleMiceMice, KnockoutMicroscopy, FluorescencePhosphorylationProtein TransportReperfusion InjuryRNA, Small InterferingSignal TransductionSodium-Potassium-Exchanging ATPaseConceptsRenal epithelial cellsATPase traffickingIntracellular compartmentsEpithelial cell polarityEpithelial cellsBasolateral plasma membraneGlucose transporter 4Cultured epithelial cellsCell polarityRab GTPaseAkt substratePlasma membraneSubcellular distributionAS160Energy depletionDirect bindingTransporter 4TraffickingDirect roleK-ATPaseATPaseTubular soluteIntracellular accumulationCellsCompartments
2014
SNAP-Tag to Monitor Trafficking of Membrane Proteins in Polarized Epithelial Cells
Stoops EH, Farr GA, Hull M, Caplan MJ. SNAP-Tag to Monitor Trafficking of Membrane Proteins in Polarized Epithelial Cells. Methods In Molecular Biology 2014, 1174: 171-182. PMID: 24947381, DOI: 10.1007/978-1-4939-0944-5_11.Peer-Reviewed Original ResearchConceptsMembrane proteinsSNAP-tagTrans-Golgi networkPolarized epithelial cellsBasolateral membrane proteinsSNAP-tag systemEpithelial cellsFluorescence microscopic analysisBiochemical approachesPlasma membraneTrafficking routesSubcellular distributionProteinConfocal microscopySDS-PAGEMicroscopic analysisTagsCellsTraffickingTag systemMembranePool
2013
Epithelial morphogenesis of MDCK cells in three-dimensional collagen culture is modulated by interleukin-8
Wells EK, Yarborough O, Lifton RP, Cantley LG, Caplan MJ. Epithelial morphogenesis of MDCK cells in three-dimensional collagen culture is modulated by interleukin-8. American Journal Of Physiology - Cell Physiology 2013, 304: c966-c975. PMID: 23485708, PMCID: PMC3651639, DOI: 10.1152/ajpcell.00261.2012.Peer-Reviewed Original ResearchConceptsMDCK cellsEpithelial morphogenesisHepatocyte growth factorGene expressionMDCK culturesDifferential gene expressionThree-dimensional collagen culturesReal-time PCR analysisGreater expression differencesMDCK cystsRenal epithelial cellsCollagen gelsGene setsTwo-dimensional cultureExpression differencesHGF stimulationThree-dimensional cultureMicroarray analysisSpherical cystsIL-8 protein expressionPCR analysisTubule-like structuresIL-8 participatesCollagen culturesProtein levels
2011
Macrophages Promote Cyst Growth in Polycystic Kidney Disease
Karihaloo A, Koraishy F, Huen SC, Lee Y, Merrick D, Caplan MJ, Somlo S, Cantley LG. Macrophages Promote Cyst Growth in Polycystic Kidney Disease. Journal Of The American Society Of Nephrology 2011, 22: 1809-1814. PMID: 21921140, PMCID: PMC3187181, DOI: 10.1681/asn.2011010084.Peer-Reviewed Original ResearchConceptsPolycystic kidney diseaseCyst-lining cellsKidney diseaseCyst growthPkd1-deficient cellsContribution of inflammationMacrophage-depleted miceVehicle-treated controlsPostnatal day 10Renal functionInflammatory componentIschemic injuryOrthologous modelCre miceCystic areasLiposomal clodronateCyst progressionRenal parenchymaCystic indexTubular cellsDay 10Therapeutic potentialDay 24Macrophage migrationMacrophagesPreactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia
Seo-Mayer PW, Thulin G, Zhang L, Alves DS, Ardito T, Kashgarian M, Caplan MJ. Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia. American Journal Of Physiology. Renal Physiology 2011, 301: f1346-f1357. PMID: 21849490, PMCID: PMC3233870, DOI: 10.1152/ajprenal.00420.2010.Peer-Reviewed Original ResearchConceptsEpithelial cell polarityMDCK cellsPlasma membrane domainsIon transport proteinsEpithelial cell organizationCellular energy sensorAMPK activator metforminMadin-Darby canine kidney cellsBasolateral plasma membraneShort hairpin RNACanine kidney cellsCell polarityImmunofluoresence localizationRenal epithelial cellsMembrane domainsNa-K-ATPaseProtein kinaseAMPK activatorPlasma membraneVesicular compartmentsAMPK activityTransport proteinsEnergy sensorMolecular consequencesBasolateral localizationActivating AMP-activated protein kinase (AMPK) slows renal cystogenesis
Takiar V, Nishio S, Seo-Mayer P, King JD, Li H, Zhang L, Karihaloo A, Hallows KR, Somlo S, Caplan MJ. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 2462-2467. PMID: 21262823, PMCID: PMC3038735, DOI: 10.1073/pnas.1011498108.Peer-Reviewed Original ResearchConceptsCystic fibrosis transmembrane conductance regulatorRenal cystogenesisProtein kinaseAutosomal dominant polycystic kidney diseaseFibrosis transmembrane conductance regulatorTransmembrane conductance regulatorEpithelial cellsCyst epithelial cellsRenal cyst developmentCyst-lining epithelial cellsAMPK activationConductance regulatorRapamycin (mTOR) pathwayMammalian targetPharmacological activatorsChloride channelsMTOR pathwayCystogenesisCyst developmentKinaseAMPKContext of ADPKDSignificant arrestDominant polycystic kidney diseasePolycystic kidney disease
2010
AS160 Associates with the Na+,K+-ATPase and Mediates the Adenosine Monophosphate-stimulated Protein Kinase-dependent Regulation of Sodium Pump Surface Expression
Alves DS, Farr GA, Seo-Mayer P, Caplan MJ. AS160 Associates with the Na+,K+-ATPase and Mediates the Adenosine Monophosphate-stimulated Protein Kinase-dependent Regulation of Sodium Pump Surface Expression. Molecular Biology Of The Cell 2010, 21: 4400-4408. PMID: 20943949, PMCID: PMC3002392, DOI: 10.1091/mbc.e10-06-0507.Peer-Reviewed Original ResearchMeSH KeywordsAMP-Activated Protein KinasesAnimalsBiological TransportCell LineChlorocebus aethiopsCOS CellsDogsDose-Response Relationship, DrugEndocytosisEpithelial CellsGene ExpressionGene Knockdown TechniquesGTPase-Activating ProteinsHumansImmunoprecipitationPhosphorylationPyrazolesPyrimidinesSignal TransductionSodium-Potassium-Exchanging ATPaseConceptsRab-GTPase-activating proteinMost epithelial cell typesCompound CProtein kinase‐dependent regulationKinase-dependent regulationActive transport proteinsMadin-Darby canine kidneyEpithelial cell typesRegulated endocytosisShort hairpin RNASurface expressionATPase endocytosisCell surface expressionProtein kinasePlasma membraneCOS cellsTransport proteinsΑ-subunitHairpin RNAAS160Cell typesIntracellular retentionVariety of mechanismsATPaseATPase activityMAL/VIP17, a New Player in the Regulation of NKCC2 in the Kidney
Carmosino M, Rizzo F, Procino G, Basco D, Valenti G, Forbush B, Schaeren-Wiemers N, Caplan MJ, Svelto M. MAL/VIP17, a New Player in the Regulation of NKCC2 in the Kidney. Molecular Biology Of The Cell 2010, 21: 3985-3997. PMID: 20861303, PMCID: PMC2982131, DOI: 10.1091/mbc.e10-05-0456.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCell LineEndocytosisEpithelial CellsHumansImmunoprecipitationKidneyLLC-PK1 CellsMembrane Transport ProteinsMiceMice, TransgenicMyelin and Lymphocyte-Associated Proteolipid ProteinsMyelin ProteinsPhosphorylationProtein BindingProteolipidsRatsRats, Inbred WKYRNA InterferenceSodium-Potassium-Chloride SymportersSolute Carrier Family 12, Member 1SwineConceptsRegulation of NKCC2Apical membraneMajor salt transport pathwayC-terminal tailCell surface retentionApical sortingPorcine kidney cellsCotransporter phosphorylationTransgenic mice resultsNephron structuresRegulated absorptionImportant roleNew playersKidney cellsSurface expressionMice resultsSurface retentionTransport pathwaysNKCC2MembraneRegulationLymphocyte-associated proteinCyst formationRat kidney medullaColocalizeExosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling
Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ. Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. Journal Of Cell Biology 2010, 190: 1079-1091. PMID: 20837771, PMCID: PMC3101591, DOI: 10.1083/jcb.201002049.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, CDBeta CateninCadherinsCell LineExosomesGene Knockdown TechniquesGenes, ReporterGlycogen Synthase Kinase 3Glycogen Synthase Kinase 3 betaHumansKangai-1 ProteinLysosomesMembrane GlycoproteinsMiceModels, BiologicalProteasome Endopeptidase ComplexProtein Processing, Post-TranslationalProtein StabilityProtein TransportSignal TransductionTetraspanin 29TransfectionWnt ProteinsConceptsΒ-cateninΒ-catenin-mediated WntProtein degradation pathwaysCellular signaling pathwaysTetraspanin membrane proteinΒ-catenin protein levelsGlycogen synthase kinase-3βWnt/β-catenin signalingSynthase kinase-3βΒ-catenin signalingMembrane proteinsCytosolic proteinsSignaling pathwaysKinase-3βExosomal packagingExosome releaseSphingomyelinase inhibitorNovel mechanismE-cadherinDegradation pathwayProtein levelsCD82Tumor metastasisCD9WntLymphocytes Accelerate Epithelial Tight Junction Assembly: Role of AMP-Activated Protein Kinase (AMPK)
Tang XX, Chen H, Yu S, Zhang L, Caplan MJ, Chan HC. Lymphocytes Accelerate Epithelial Tight Junction Assembly: Role of AMP-Activated Protein Kinase (AMPK). PLOS ONE 2010, 5: e12343. PMID: 20808811, PMCID: PMC2925955, DOI: 10.1371/journal.pone.0012343.Peer-Reviewed Original ResearchConceptsTJ assemblyActivation of AMPKProtein kinaseEpithelial cellsCalcium switch experimentsEpithelial cell polaritySuppression of AMPKTight junction assemblyRole of AMPMadin-Darby canine kidney cellsCellular ATP levelsCanine kidney cellsTight junctionsCell polarityApicolateral borderJunction assemblyModel cell lineAMPK activationProper formationAdjacent epithelial cellsTJ formationChemical inhibitorsCalu-3 human airway epithelial cellsHuman airway epithelial cellsMDCK cells
2009
Chapter 11 Detecting the Surface Localization and Cytoplasmic Cleavage of Membrane-Bound Proteins
Chapin HC, Rajendran V, Capasso A, Caplan MJ. Chapter 11 Detecting the Surface Localization and Cytoplasmic Cleavage of Membrane-Bound Proteins. Methods In Cell Biology 2009, 94: 223-239. PMID: 20362093, PMCID: PMC3063071, DOI: 10.1016/s0091-679x(08)94011-5.Peer-Reviewed Original ResearchConceptsC-terminal tailPolycystin-1Membrane-bound proteinsSubcellular localizationNuclear localizationPlasma membranePC1 proteinCytoplasmic cleavagePhysiological functionsSurface localizationFunctional roleSurface proteinsCell surfaceSurface populationsSpecific cleavageProteinImmunofluorescence protocolSoluble fragmentProtein expressionCell populationsImportant poolAutosomal dominant polycystic kidney diseasePolycystic kidney diseaseCleavageComplete understandingPOSH Stimulates the Ubiquitination and the Clathrin-independent Endocytosis of ROMK1 Channels*
Lin DH, Yue P, Pan CY, Sun P, Zhang X, Han Z, Roos M, Caplan M, Giebisch G, Wang WH. POSH Stimulates the Ubiquitination and the Clathrin-independent Endocytosis of ROMK1 Channels*. Journal Of Biological Chemistry 2009, 284: 29614-29624. PMID: 19710010, PMCID: PMC2785594, DOI: 10.1074/jbc.m109.041582.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsBiological TransportCell LineClathrinDynaminsEpithelial Sodium ChannelsGene Expression RegulationHumansKidney Tubules, CollectingOocytesPotassium Channels, Inwardly RectifyingProtein Sorting SignalsProtein Structure, TertiaryRatsRats, Sprague-DawleyUbiquitin-Protein LigasesUbiquitinationXenopus laevisConceptsHEK293T cellsClathrin-independent endocytosisE3 ubiquitin ligaseUbiquitin ligaseGlutathione S-transferase pulldown experimentsROMK1 channelsT cellsTyrosine-based internalization signalPotassium currentROMK channelsDominant-negative dynaminImmunoprecipitation of lysatesInternalization signalInhibitory effectPulldown experimentsScaffold proteinUbiquitination assaysRING domainUbiquitinationN-terminusGamma subunitsAmino acidsENaC-alphaROMK1Tissue lysatesMembrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells
Farr GA, Hull M, Mellman I, Caplan MJ. Membrane proteins follow multiple pathways to the basolateral cell surface in polarized epithelial cells. Journal Of Cell Biology 2009, 186: 269-282. PMID: 19620635, PMCID: PMC2717640, DOI: 10.1083/jcb.200901021.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiological TransportCadherinsCell LineCell MembraneCell PolarityDogsEndosomesEpithelial CellsExocytosisGolgi ApparatusHumansMembrane GlycoproteinsMembrane ProteinsModels, MolecularProtein Structure, SecondaryProtein TransportReceptors, TransferrinRecombinant Fusion ProteinsSodium-Potassium-Exchanging ATPaseStaining and LabelingTrans-Golgi NetworkViral Envelope ProteinsConceptsBasolateral proteinsMembrane proteinsSurface deliveryK-ATPaseVesicular stomatitis virus G proteinPolarized epithelial cellsBasolateral membrane proteinsEpithelial cellsVirus G proteinBasolateral cell surfaceBasolateral deliveryTransport intermediatesGolgi networkSmall GTPasesPlasma membraneG proteinsCell surfaceProteinMultiple pathwaysBasolateral membraneGolgiPathwayCellsMembraneGTPasesThe uptake and intracellular fate of PLGA nanoparticles in epithelial cells
Cartiera MS, Johnson KM, Rajendran V, Caplan MJ, Saltzman WM. The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials 2009, 30: 2790-2798. PMID: 19232712, PMCID: PMC3195413, DOI: 10.1016/j.biomaterials.2009.01.057.Peer-Reviewed Original ResearchConceptsEpithelial cellsCell linesRenal proximal tubulesType of epitheliumParticle/cell ratiosCaco-2 cellsEpithelial cell lineIntracellular fateProximal tubulesRespiratory airwaysCell ratioImmunofluorescence techniqueOK cellsDifferent epithelial cell linesEndoplasmic reticulumConfocal analysisMajor targetConfocal microscopyExtent of uptakeCellsParticle uptakeEarly endosomesCellular uptakePLGA nanoparticlesUptake
2008
Exon Loss Accounts for Differential Sorting of Na-K-Cl Cotransporters in Polarized Epithelial Cells
Carmosino M, Giménez I, Caplan M, Forbush B. Exon Loss Accounts for Differential Sorting of Na-K-Cl Cotransporters in Polarized Epithelial Cells. Molecular Biology Of The Cell 2008, 19: 4341-4351. PMID: 18667527, PMCID: PMC2555935, DOI: 10.1091/mbc.e08-05-0478.Peer-Reviewed Original ResearchConceptsDileucine motifNa-K-Cl cotransporterRenal Na-K-Cl cotransporterPolarized epithelial cellsAmino acid stretchApical proteinsApical sortingEvolutionary lossRenal epithelial cell lineGene structurePhylogenetic analysisDifferential sortingDirect traffickingEpithelial cell lineAdditional exonC-terminusMammalian kidneyApical membraneExonsNovel mechanismNKCC2 geneCell linesBasolateral membraneMotifEpithelial cellsPolycystin-1 C-terminal tail associates with β-catenin and inhibits canonical Wnt signaling
Lal M, Song X, Pluznick JL, Di Giovanni V, Merrick DM, Rosenblum ND, Chauvet V, Gottardi CJ, Pei Y, Caplan MJ. Polycystin-1 C-terminal tail associates with β-catenin and inhibits canonical Wnt signaling. Human Molecular Genetics 2008, 17: 3105-3117. PMID: 18632682, PMCID: PMC2722884, DOI: 10.1093/hmg/ddn208.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBeta CateninBinding SitesCell LineCell NucleusCHO CellsCricetinaeCricetulusGene Expression ProfilingGene Expression RegulationHumansLigandsOligonucleotide Array Sequence AnalysisPeptide FragmentsPolycystic Kidney, Autosomal DominantRecombinant ProteinsSignal TransductionSystems BiologyTCF Transcription FactorsTransfectionTRPP Cation ChannelsWnt ProteinsConceptsC-terminal tailCanonical WntPolycystin-1Wnt-dependent signalingDNA microarray analysisDependent gene transcriptionN-terminal portionInhibits canonical WntTCF proteinsT-cell factorAutosomal dominant polycystic kidney disease (ADPKD) casesMotif presentGene transcriptionDevelopmental processesMicroarray analysisWntPKD1 geneΒ-cateninNovel mechanism
2007
MAL decreases the internalization of the aquaporin-2 water channel
Kamsteeg EJ, Duffield AS, Konings IB, Spencer J, Pagel P, Deen PM, Caplan MJ. MAL decreases the internalization of the aquaporin-2 water channel. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 16696-16701. PMID: 17940053, PMCID: PMC2034241, DOI: 10.1073/pnas.0708023104.Peer-Reviewed Original ResearchConceptsAquaporin-2 water channelIntracellular vesiclesApical membrane proteinsMembrane-associated proteinsTrafficking of AQP2Apical surface expressionEpithelial cellsCell surface retentionApical plasma membraneInvolvement of MALBody water homeostasisS256 phosphorylationWater channel proteinsSurface expressionApical deliveryRegulated traffickingSorting eventsRenal epithelial cellsMembrane associationMembrane proteinsPosttranslational modificationsProtein interactionsPlasma membraneChannel proteinsWater channelsArrestins and Spinophilin Competitively Regulate Na+,K+-ATPase Trafficking through Association with a Large Cytoplasmic Loop of the Na+,K+-ATPase
Kimura T, Allen PB, Nairn AC, Caplan MJ. Arrestins and Spinophilin Competitively Regulate Na+,K+-ATPase Trafficking through Association with a Large Cytoplasmic Loop of the Na+,K+-ATPase. Molecular Biology Of The Cell 2007, 18: 4508-4518. PMID: 17804821, PMCID: PMC2043564, DOI: 10.1091/mbc.e06-08-0711.Peer-Reviewed Original ResearchMeSH Keywords14-3-3 ProteinsAnimalsArrestinBinding, CompetitiveCell LineChlorocebus aethiopsChoroid PlexusCytoplasmG-Protein-Coupled Receptor KinasesKidneyMiceMicrofilament ProteinsNerve Tissue ProteinsPhosphorylationProtein BindingProtein SubunitsProtein TransportRabbitsSodium-Potassium-Exchanging ATPaseConceptsG protein-coupled receptorsLarge cytoplasmic loopExpression of spinophilinCytoplasmic loopMock-transfected cellsGRK-2Adrenergic hormonesReceptor signalingImportant modulatorSpinophilinATPase endocytosisATPase traffickingArrestin-2COS cellsArrestinHormoneAssociationATPaseGRKsCellsTraffickingEpsilonVasopressinReceptors
2006
AMP-activated protein kinase regulates the assembly of epithelial tight junctions
Zhang L, Li J, Young LH, Caplan MJ. AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 17272-17277. PMID: 17088526, PMCID: PMC1859922, DOI: 10.1073/pnas.0608531103.Peer-Reviewed Original ResearchConceptsTight junction assemblyJunction assemblyProtein kinaseLKB1-dependent phosphorylationCell polarization processCellular energy statusActivation of AMPKTight junctionsEukaryotic cellsTight junction structureAMPKMDCK cellsEpithelial tight junctionsEnergy statusKinaseEpithelial cellsAbsence of Ca2AssemblyTransepithelial electrical resistanceParacellular fluxZonula occludens-1CellsRecent studiesOccludens-1LKB1