2022
TET3 epigenetically controls feeding and stress response behaviors via AGRP neurons
Xie D, Stutz B, Li F, Chen F, Lv H, Sestan-Pesa M, Catarino J, Gu J, Zhao H, Stoddard CE, Carmichael GG, Shanabrough M, Taylor HS, Liu ZW, Gao XB, Horvath TL, Huang Y. TET3 epigenetically controls feeding and stress response behaviors via AGRP neurons. Journal Of Clinical Investigation 2022, 132: e162365. PMID: 36189793, PMCID: PMC9525119, DOI: 10.1172/jci162365.Peer-Reviewed Original ResearchConceptsAgRP neuronsNeuropeptide YExpression of AgRPControl of feedingHypothalamic agoutiAnxiolytic effectsNeurotransmitter GABAMouse modelLeptin signalingStress-like behaviorsGenetic ablationNeuronsAgRPCritical central regulatorsEnergy expenditureGABAEnergy metabolismAppetiteFeedingCentral regulatorMetabolismCentral controlHuman cellsTET3Obesity
2020
AgRP neurons control compulsive exercise and survival in an activity-based anorexia model
Miletta MC, Iyilikci O, Shanabrough M, Šestan-Peša M, Cammisa A, Zeiss CJ, Dietrich MO, Horvath TL. AgRP neurons control compulsive exercise and survival in an activity-based anorexia model. Nature Metabolism 2020, 2: 1204-1211. PMID: 33106687, DOI: 10.1038/s42255-020-00300-8.Peer-Reviewed Original ResearchConceptsAgRP neuronsActivity-based anorexia modelAgRP neuronal activityVivo fiber photometryFood-restricted miceFood-restricted animalsCompulsive exerciseAnorexia modelHypothalamic agoutiNeuropeptide YExercise volumeFood intakeMouse modelNeuronal activityFiber photometryDaily activationNeuronal circuitsPsychiatric conditionsAnorexia nervosaChemogenetic toolsNeuronsLong-term behavioral impactElevated fat contentVoluntary cessationFat content
2017
Endothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons
Varela L, Suyama S, Huang Y, Shanabrough M, Tschöp M, Gao XB, Giordano FJ, Horvath TL. Endothelial HIF-1α Enables Hypothalamic Glucose Uptake to Drive POMC Neurons. Diabetes 2017, 66: db161106. PMID: 28292966, PMCID: PMC5440016, DOI: 10.2337/db16-1106.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBehavior, AnimalBlotting, WesternEndotheliumEnergy MetabolismFood DeprivationGene Knockdown TechniquesGlucoseHyperphagiaHypothalamusHypoxia-Inducible Factor 1, alpha SubunitImmunohistochemistryMiceMicroscopy, ElectronMitochondriaNeuronsPatch-Clamp TechniquesPro-OpiomelanocortinReal-Time Polymerase Chain ReactionConceptsPOMC neuronsGlucose uptakePOMC neuronal activityHypothalamic proopiomelanocortin (POMC) neuronsHypoxia-inducible factor-1αProopiomelanocortin neuronsVascular impairmentGlucose administrationMetabolic disordersNeuronal activityMetabolic environmentFactor-1αImpaired functioningEndothelial cellsNeuronsFood deprivationVivoCentral controlHypothalamusMiceAdministrationUptakeImpairment
2015
Bcl-xL Is Necessary for Neurite Outgrowth in Hippocampal Neurons
Park HA, Licznerski P, Alavian KN, Shanabrough M, Jonas EA. Bcl-xL Is Necessary for Neurite Outgrowth in Hippocampal Neurons. Antioxidants & Redox Signaling 2015, 22: 93-108. PMID: 24787232, PMCID: PMC4281845, DOI: 10.1089/ars.2013.5570.Peer-Reviewed Original ResearchConceptsDeath receptor 6Hippocampal neuronsNeurite outgrowthExacerbation of hypoxiaBcl-xLNeuronal outgrowthNeuronal process outgrowthNeuronal injuryNeurodegenerative stimuliVivo ischemiaHypoxic injuryNeuronal survivalBrain injuryImpairs neurite outgrowthHypoxic controlsSynapse numberAxonal pruningNeurite damageB cellsReceptor 6Synaptic plasticityDR6 expressionSynapse formationEarly increaseNeurons
2011
Peroxisome proliferation–associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity
Diano S, Liu ZW, Jeong JK, Dietrich MO, Ruan HB, Kim E, Suyama S, Kelly K, Gyengesi E, Arbiser JL, Belsham DD, Sarruf DA, Schwartz MW, Bennett AM, Shanabrough M, Mobbs CV, Yang X, Gao XB, Horvath TL. Peroxisome proliferation–associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nature Medicine 2011, 17: 1121-1127. PMID: 21873987, PMCID: PMC3388795, DOI: 10.1038/nm.2421.Peer-Reviewed Original Research
2010
Early-Life Experience Reduces Excitation to Stress-Responsive Hypothalamic Neurons and Reprograms the Expression of Corticotropin-Releasing Hormone
Korosi A, Shanabrough M, McClelland S, Liu ZW, Borok E, Gao XB, Horvath TL, Baram TZ. Early-Life Experience Reduces Excitation to Stress-Responsive Hypothalamic Neurons and Reprograms the Expression of Corticotropin-Releasing Hormone. Journal Of Neuroscience 2010, 30: 703-713. PMID: 20071535, PMCID: PMC2822406, DOI: 10.1523/jneurosci.4214-09.2010.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnalysis of VarianceAnimalsAnimals, NewbornChromatin ImmunoprecipitationCorticotropin-Releasing HormoneExcitatory Amino Acid AntagonistsFemaleGene Expression Regulation, DevelopmentalMaleMaternal DeprivationMicroscopy, Electron, TransmissionNeuronsParaventricular Hypothalamic NucleusPatch-Clamp TechniquesPhysical StimulationPregnancyRatsRats, Sprague-DawleyRepressor ProteinsRNA, MessengerSodium Channel BlockersStress, PsychologicalSynaptic PotentialsTetrodotoxinVesicular Glutamate Transport Protein 2ConceptsCorticotropin-releasing hormoneNeuron-restrictive silencer factorCRH neuronsHypothalamic neuronsCRH expressionEarly life experiencesMiniature excitatory synaptic currentsHypothalamic CRH neuronsExcitatory synaptic currentsCRH gene expressionGlutamate vesicular transporterCRH gene transcriptionTranscriptional repressor neuron-restrictive silencer factorExcitatory innervationExperience-induced neuroplasticityInhibitory synapsesRat pupsExcitatory synapsesSynaptic currentsPersistent suppressionVesicular transportersCognitive functionNeuronsSilencer factorMaternal care