2000
Molecular motors: the driving force behind mammalian left–right development
Supp D, Potter S, Brueckner M, Supp D, Potter S, Brueckner M. Molecular motors: the driving force behind mammalian left–right development. Trends In Cell Biology 2000, 10: 41-45. PMID: 10652513, DOI: 10.1016/s0962-8924(99)01701-8.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBody PatterningDyneinsEmbryonic and Fetal DevelopmentHumansKinesinsMicrotubule-Associated ProteinsConceptsEarly vertebrate developmentMitotic spindle movementsLarge protein complexesLeft-right developmentLeft-right axisEmbryonic patterningVertebrate developmentProtein complexesCellular processesMicrotubule cytoskeletonVesicular transportSpindle movementsATP hydrolysisMolecular motorsDirectional movementCiliary beatingUnique roleCytoskeletonKinesinPatterningComplexesHydrolysis
1997
Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice
Supp D, Witte D, Potter S, Brueckner M. Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice. Nature 1997, 389: 963-966. PMID: 9353118, PMCID: PMC1800588, DOI: 10.1038/40140.Peer-Reviewed Original ResearchConceptsAxonemal dynein heavy chain geneDynein heavy chain geneAsymmetric expression patternMicrotubule-based motorsEmbryonic day 7.5Vertebrate patterningLeft-right axisGenetic hierarchyLeft-right asymmetryEarly molecular mechanismsPositional cloningHeavy chain geneInversus viscerum (iv) mouseGene productsVisceral asymmetryAxonemal dyneinsSymmetrical embryosExpression patternsMolecular mechanismsLR determinationMolecular levelDay 7.5EmbryosLateralization defectsDynein