2024
Cellular stiffness sensing through talin 1 in tissue mechanical homeostasis
Chanduri M, Kumar A, Weiss D, Emuna N, Barsukov I, Shi M, Tanaka K, Wang X, Datye A, Kanyo J, Collin F, Lam T, Schwarz U, Bai S, Nottoli T, Goult B, Humphrey J, Schwartz M. Cellular stiffness sensing through talin 1 in tissue mechanical homeostasis. Science Advances 2024, 10: eadi6286. PMID: 39167642, PMCID: PMC11338229, DOI: 10.1126/sciadv.adi6286.Peer-Reviewed Original ResearchConceptsTissue mechanical homeostasisStiffness sensingExtracellular matrixTalin-1Mechanical homeostasisExtracellular matrix mechanicsIncreased cell spreadingCell spreadingTalinMutationsCellular sensingFibrillar collagenReduced axial stiffnessTissue mechanical propertiesMechanical propertiesAxial stiffnessCompliant substratesHomeostasisRupture pressureArp2/3ARPC5LStiffnessHomeostasis hypothesisResident cellsTissue stiffness
2023
Altered Integrin Signaling in Thoracic Aortopathy
Humphrey J, Schwartz M. Altered Integrin Signaling in Thoracic Aortopathy. Arteriosclerosis Thrombosis And Vascular Biology 2023, 43: 1154-1156. PMID: 37165879, DOI: 10.1161/atvbaha.123.319404.Commentaries, Editorials and Letters
2018
Inhibiting Integrin α5 Cytoplasmic Domain Signaling Reduces Atherosclerosis and Promotes Arteriogenesis
Budatha M, Zhang J, Zhuang ZW, Yun S, Dahlman JE, Anderson DG, Schwartz MA. Inhibiting Integrin α5 Cytoplasmic Domain Signaling Reduces Atherosclerosis and Promotes Arteriogenesis. Journal Of The American Heart Association 2018, 7: e007501. PMID: 29382667, PMCID: PMC5850249, DOI: 10.1161/jaha.117.007501.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaAortic DiseasesAtherosclerosisCyclic Nucleotide Phosphodiesterases, Type 4Disease Models, AnimalExtracellular MatrixFibronectinsFibrosisGenetic Predisposition to DiseaseHindlimbInflammation MediatorsIntegrin alpha2Integrin alpha5IschemiaLeukocytesMaleMatrix MetalloproteinasesMice, Inbred C57BLMice, Knockout, ApoEMuscle, SkeletalNeovascularization, PhysiologicNF-kappa BPhenotypePlaque, AtheroscleroticSignal TransductionVascular RemodelingConceptsEndothelial inflammatory activationAtherosclerotic plaque sizeInflammatory activationPlaque stabilityVascular remodelingEndothelial NF-κB activationSmooth muscle cell contentPlaque sizeFemoral artery ligationMuscle cell contentTreatment of atherosclerosisInflammatory gene expressionPotential therapeutic targetFibrous cap thicknessNF-κB activationSmaller atherosclerotic plaquesArtery ligationAortic rootHindlimb ischemiaCompensatory remodelingAtherosclerotic plaquesTherapeutic targetLeukocyte contentMetalloproteinase expressionEndothelial basement membrane
2017
Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish
Lagendijk AK, Gomez GA, Baek S, Hesselson D, Hughes WE, Paterson S, Conway DE, Belting HG, Affolter M, Smith KA, Schwartz MA, Yap AS, Hogan BM. Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish. Nature Communications 2017, 8: 1402. PMID: 29123087, PMCID: PMC5680264, DOI: 10.1038/s41467-017-01325-6.Peer-Reviewed Original ResearchConceptsVE-cadherinEndothelial cell-cell junctionsCell-cell junctionsActo-myosin cytoskeletonTension sensorActo-myosin contractilityJunctional tensionEmbryonic developmentDiverse rolesVascular developmentLive zebrafishChemical perturbationsFRET measurementsZebrafishAdjacent cellsMolecular changesEndothelial cellsCellsBiosensor approachCytoskeletonHomeostasisLocalizationVivoTensile changesMatures
2014
Change of Direction in the Biomechanics of Atherosclerosis
Mohamied Y, Rowland EM, Bailey EL, Sherwin SJ, Schwartz MA, Weinberg PD. Change of Direction in the Biomechanics of Atherosclerosis. Annals Of Biomedical Engineering 2014, 43: 16-25. PMID: 25138165, PMCID: PMC4286626, DOI: 10.1007/s10439-014-1095-4.Peer-Reviewed Original ResearchConceptsLesion prevalenceEndothelial cellsAnti-inflammatory effectsPro-inflammatory effectsRank correlation coefficientAortic branch ostiaLesion locationRabbit aortaSpearman's rank correlation coefficientArterial systemPrevalenceBranch ostiumConfidence intervalsMature rabbitsAtherosclerosisTime-averaged wall shear stressAgeShear metrics
2005
12/15-Lipoxygenase Regulates Intercellular Adhesion Molecule-1 Expression and Monocyte Adhesion to Endothelium Through Activation of RhoA and Nuclear Factor-&kgr;B
Bolick DT, Orr AW, Whetzel A, Srinivasan S, Hatley ME, Schwartz MA, Hedrick CC. 12/15-Lipoxygenase Regulates Intercellular Adhesion Molecule-1 Expression and Monocyte Adhesion to Endothelium Through Activation of RhoA and Nuclear Factor-&kgr;B. Arteriosclerosis Thrombosis And Vascular Biology 2005, 25: 2301-2307. PMID: 16166569, DOI: 10.1161/01.atv.0000186181.19909.a6.Peer-Reviewed Original ResearchMeSH Keywords12-Hydroxy-5,8,10,14-eicosatetraenoic AcidAnimalsAortaArachidonate 12-LipoxygenaseArachidonate 15-LipoxygenaseAtherosclerosisCell AdhesionEndothelium, VascularGene ExpressionIntercellular Adhesion Molecule-1MiceMice, Inbred C57BLMice, TransgenicMonocytesNF-kappa BProtein Kinase C-alphaRhoA GTP-Binding ProteinSignal TransductionVasculitisConceptsICAM-1 expressionEndothelial cellsMonocyte adhesionIntercellular adhesion molecule-1 expressionEndothelial ICAM-1 expressionAdhesion molecule-1 expressionNuclear factor-kappaB activationMolecule-1 expressionIntercellular adhesion moleculeNF-kappaB activationRho kinase inhibitor YICAM-1 inductionEndothelial intercellular adhesion moleculeAortic endothelial cellsVascular inflammationC57BL/6J controlsICAM expressionInhibition of RhoATransgenic miceActivation of RhoAHydroxyeicosatetraenoic acidNF-kappaBMRNA expressionNF-kappaB.Nuclear factor
2004
VE-cadherin Links tRNA Synthetase Cytokine to Anti-angiogenic Function*
Tzima E, Reader JS, Irani-Tehrani M, Ewalt KL, Schwartz MA, Schimmel P. VE-cadherin Links tRNA Synthetase Cytokine to Anti-angiogenic Function*. Journal Of Biological Chemistry 2004, 280: 2405-2408. PMID: 15579907, DOI: 10.1074/jbc.c400431200.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesAngiogenesis InhibitorsAnimalsAntigens, CDAortaBlotting, WesternCadherinsCattleCell MovementCells, CulturedCytokinesEndothelium, VascularEnzyme ActivationExtracellular Signal-Regulated MAP KinasesGap JunctionsGreen Fluorescent ProteinsImmunoprecipitationMicroscopy, ConfocalMicroscopy, FluorescenceNeovascularization, PathologicProtein BindingRecombinant ProteinsSignal TransductionTryptophan-tRNA LigaseVascular Endothelial Growth Factor AConceptsT2-TrpRS
2003
Localized Cdc42 Activation, Detected Using a Novel Assay, Mediates Microtubule Organizing Center Positioning in Endothelial Cells in Response to Fluid Shear Stress*
Tzima E, Kiosses WB, del Pozo MA, Schwartz MA. Localized Cdc42 Activation, Detected Using a Novel Assay, Mediates Microtubule Organizing Center Positioning in Endothelial Cells in Response to Fluid Shear Stress*. Journal Of Biological Chemistry 2003, 278: 31020-31023. PMID: 12754216, DOI: 10.1074/jbc.m301179200.Peer-Reviewed Original ResearchConceptsMicrotubule organizing centerCdc42 activityCdc42 activationFluid shear stressSmall GTPase Cdc42Protein kinase CzetaGTPase Cdc42Early embryosEndothelial cellsIntegrin dynamicsOrganizing centerCdc42Extracellular matrixLocalized activationFluorescence energy transferMTOC localizationVascular endothelial cellsSingle cellsNovel assayCellsActivationPar6CzetaGolgiEmbryos
2001
Activation of integrins in endothelial cells by fluid shear stress mediates Rho‐dependent cytoskeletal alignment
Tzima E, del Pozo M, Shattil S, Chien S, Schwartz M. Activation of integrins in endothelial cells by fluid shear stress mediates Rho‐dependent cytoskeletal alignment. The EMBO Journal 2001, 20: 4639-4647. PMID: 11532928, PMCID: PMC125600, DOI: 10.1093/emboj/20.17.4639.Peer-Reviewed Original ResearchAnimalsAortaCattleCells, CulturedCulture Media, Serum-FreeCytoskeletonEndothelium, VascularExtracellular Matrix ProteinsFibronectinsGreen Fluorescent ProteinsIntegrinsKineticsLuminescent ProteinsProtein ConformationReceptors, VitronectinRecombinant ProteinsRho GTP-Binding ProteinsStress, MechanicalTime FactorsTransfection