2024
Cellular stiffness sensing through talin 1 in tissue mechanical homeostasis
Chanduri M, Kumar A, Weiss D, Emuna N, Barsukov I, Shi M, Tanaka K, Wang X, Datye A, Kanyo J, Collin F, Lam T, Schwarz U, Bai S, Nottoli T, Goult B, Humphrey J, Schwartz M. Cellular stiffness sensing through talin 1 in tissue mechanical homeostasis. Science Advances 2024, 10: eadi6286. PMID: 39167642, PMCID: PMC11338229, DOI: 10.1126/sciadv.adi6286.Peer-Reviewed Original ResearchConceptsTissue mechanical homeostasisStiffness sensingExtracellular matrixTalin-1Mechanical homeostasisExtracellular matrix mechanicsIncreased cell spreadingCell spreadingTalinMutationsCellular sensingFibrillar collagenReduced axial stiffnessTissue mechanical propertiesMechanical propertiesAxial stiffnessCompliant substratesHomeostasisRupture pressureArp2/3ARPC5LStiffnessHomeostasis hypothesisResident cellsTissue stiffness
2022
MicroRNAs in Mechanical Homeostasis
Herrera JA, Schwartz MA. MicroRNAs in Mechanical Homeostasis. Cold Spring Harbor Perspectives In Medicine 2022, 12: a041220. PMID: 35379658, PMCID: PMC9380736, DOI: 10.1101/cshperspect.a041220.Peer-Reviewed Original Research
2021
Vascular Mechanobiology: Homeostasis, Adaptation, and Disease
Humphrey JD, Schwartz MA. Vascular Mechanobiology: Homeostasis, Adaptation, and Disease. Annual Review Of Biomedical Engineering 2021, 23: 1-27. PMID: 34255994, PMCID: PMC8719655, DOI: 10.1146/annurev-bioeng-092419-060810.Peer-Reviewed Original ResearchConceptsArterial healthDisease progressionVascular wallTherapeutic needsHealthy vesselsHomeostatic mechanismsDiseaseVessel wallHomeostatic pathwaysPositive feedback loopWall mechanicsHomeostasisGene expressionOptimal functionMajor diseasesNegative feedback loopRegulatory pathwaysInflammationBiochemical meansArteryDevelopmental origins of mechanical homeostasis in the aorta
Murtada S, Kawamura Y, Li G, Schwartz MA, Tellides G, Humphrey JD. Developmental origins of mechanical homeostasis in the aorta. Developmental Dynamics 2021, 250: 629-639. PMID: 33341996, PMCID: PMC8089041, DOI: 10.1002/dvdy.283.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, BiologicalAnimalsAorta, ThoracicHomeostasisMaleMice, Inbred C57BLStress, MechanicalConceptsPostnatal days P2Intramural cellsSmooth muscle contractilityLate prenatal periodBlood pressureDays P2Muscle contractilityAortic structureMurine aortaPrenatal periodEndothelial cellsAortaPathological conditionsAortic developmentDeposition of matrixDevelopmental originsMatrix depositionHomeostasisHomeostatic stateCellsIntramural stressPressure-induced mechanical stressFlow-induced shear stressMechanical loadingContractility
2019
MicroRNA-dependent regulation of biomechanical genes establishes tissue stiffness homeostasis
Moro A, Driscoll TP, Boraas LC, Armero W, Kasper DM, Baeyens N, Jouy C, Mallikarjun V, Swift J, Ahn SJ, Lee D, Zhang J, Gu M, Gerstein M, Schwartz M, Nicoli S. MicroRNA-dependent regulation of biomechanical genes establishes tissue stiffness homeostasis. Nature Cell Biology 2019, 21: 348-358. PMID: 30742093, PMCID: PMC6528464, DOI: 10.1038/s41556-019-0272-y.Peer-Reviewed Original ResearchConceptsArgonaute 2MicroRNA-dependent regulationMechanical homeostasisMicroRNA recognition elementsExtracellular matrix proteinsZebrafish finsMicroRNA familiesTarget mRNAsVertebrate tissuesHyper-contractile phenotypesRegulatory pathwaysUntranslated regionRecognition elementMatrix proteinsComprehensive identificationCaM mRNAConnective tissue growth factorExtracellular matrix depositionHomeostasisTissue growth factorMRNAFibroblast cellsMicroRNAsGrowth factorSoft substrates
2014
Mechanotransduction and extracellular matrix homeostasis
Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nature Reviews Molecular Cell Biology 2014, 15: 802-812. PMID: 25355505, PMCID: PMC4513363, DOI: 10.1038/nrm3896.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCytoskeletonExtracellular MatrixHomeostasisHumansIntegrinsMechanotransduction, Cellular
1996
Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic–nuclear transport
Lewis J, Baskaran R, Taagepera S, Schwartz M, Wang J. Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic–nuclear transport. Proceedings Of The National Academy Of Sciences Of The United States Of America 1996, 93: 15174-15179. PMID: 8986783, PMCID: PMC26376, DOI: 10.1073/pnas.93.26.15174.Peer-Reviewed Original ResearchConceptsNuclear c-AblC-AblKinase activityC-Abl tyrosine kinase activityTyrosine kinaseCell adhesionCell cycle signalsCytoplasmic-nuclear transportExtracellular matrix protein fibronectinNonreceptor tyrosine kinaseCytoplasmic c-AblC-Abl activationC-Abl activityMatrix protein fibronectinTyrosine kinase activityC-abl protooncogeneMin of adhesionIntegrin regulationSubcellular localizationIntegrin signalsFocal contactsCytoplasmic poolTransient recruitmentSubcellular distributionProtein fibronectin