2024
Cellular stiffness sensing through talin 1 in tissue mechanical homeostasis
Chanduri M, Kumar A, Weiss D, Emuna N, Barsukov I, Shi M, Tanaka K, Wang X, Datye A, Kanyo J, Collin F, Lam T, Schwarz U, Bai S, Nottoli T, Goult B, Humphrey J, Schwartz M. Cellular stiffness sensing through talin 1 in tissue mechanical homeostasis. Science Advances 2024, 10: eadi6286. PMID: 39167642, PMCID: PMC11338229, DOI: 10.1126/sciadv.adi6286.Peer-Reviewed Original ResearchMeSH KeywordsActin-Related Protein 2-3 ComplexAnimalsAortaBiomechanical PhenomenaExtracellular MatrixHomeostasisHumansMechanotransduction, CellularMiceMutationProtein BindingTalinConceptsTissue mechanical homeostasisStiffness sensingExtracellular matrixTalin-1Mechanical homeostasisExtracellular matrix mechanicsIncreased cell spreadingCell spreadingTalinMutationsCellular sensingFibrillar collagenReduced axial stiffnessTissue mechanical propertiesMechanical propertiesAxial stiffnessCompliant substratesHomeostasisRupture pressureArp2/3ARPC5LStiffnessHomeostasis hypothesisResident cellsTissue stiffness
2021
Vascular Mechanobiology: Homeostasis, Adaptation, and Disease
Humphrey JD, Schwartz MA. Vascular Mechanobiology: Homeostasis, Adaptation, and Disease. Annual Review Of Biomedical Engineering 2021, 23: 1-27. PMID: 34255994, PMCID: PMC8719655, DOI: 10.1146/annurev-bioeng-092419-060810.Peer-Reviewed Original ResearchConceptsArterial healthDisease progressionVascular wallTherapeutic needsHealthy vesselsHomeostatic mechanismsDiseaseVessel wallHomeostatic pathwaysPositive feedback loopWall mechanicsHomeostasisGene expressionOptimal functionMajor diseasesNegative feedback loopRegulatory pathwaysInflammationBiochemical meansArtery
2019
Filamin A mediates isotropic distribution of applied force across the actin network
Kumar A, Shutova MS, Tanaka K, Iwamoto DV, Calderwood DA, Svitkina TM, Schwartz MA. Filamin A mediates isotropic distribution of applied force across the actin network. Journal Of Cell Biology 2019, 218: 2481-2491. PMID: 31315944, PMCID: PMC6683746, DOI: 10.1083/jcb.201901086.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsBiomechanical PhenomenaFilaminsFocal AdhesionsGene Knockdown TechniquesHEK293 CellsHumansMiceNIH 3T3 CellsStress FibersStress, MechanicalTalinConceptsTalin tension sensorStress fibersActin networkFilamin ACortical actin networkCortical actin filamentsIntegrin-mediated adhesionActin cytoskeletonFocal adhesionsCortical actinFLNA knockdownActin filamentsTalinKnockdownCell sensingDirection of stretchTension sensorPhysiology of muscleUniaxial stretchForce transmissionCytoskeletonStrainsStretchAdhesionReexpression
2017
Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish
Lagendijk AK, Gomez GA, Baek S, Hesselson D, Hughes WE, Paterson S, Conway DE, Belting HG, Affolter M, Smith KA, Schwartz MA, Yap AS, Hogan BM. Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish. Nature Communications 2017, 8: 1402. PMID: 29123087, PMCID: PMC5680264, DOI: 10.1038/s41467-017-01325-6.Peer-Reviewed Original ResearchConceptsVE-cadherinEndothelial cell-cell junctionsCell-cell junctionsActo-myosin cytoskeletonTension sensorActo-myosin contractilityJunctional tensionEmbryonic developmentDiverse rolesVascular developmentLive zebrafishChemical perturbationsFRET measurementsZebrafishAdjacent cellsMolecular changesEndothelial cellsCellsBiosensor approachCytoskeletonHomeostasisLocalizationVivoTensile changesMaturesVE-Cadherin Phosphorylation Regulates Endothelial Fluid Shear Stress Responses through the Polarity Protein LGN
Conway DE, Coon BG, Budatha M, Arsenovic PT, Orsenigo F, Wessel F, Zhang J, Zhuang Z, Dejana E, Vestweber D, Schwartz MA. VE-Cadherin Phosphorylation Regulates Endothelial Fluid Shear Stress Responses through the Polarity Protein LGN. Current Biology 2017, 27: 2219-2225.e5. PMID: 28712573, PMCID: PMC5667920, DOI: 10.1016/j.cub.2017.06.020.Peer-Reviewed Original ResearchConceptsSrc family kinasesProtein LGNCytoplasmic tyrosinesVE-cadherinVascular endothelial growth factor receptorVE-cadherin functionJunctional complexesRespective cytoplasmic domainsBlood vessel developmentVE-cadherin phosphorylationTransduce forcesTransduce signalsCytoplasmic domainFamily kinasesBlood vessel remodelingGrowth factor receptorVEGFR activationPECAM-1Stress responseComplex consistingFluid shear stressVessel developmentFlow-dependent vascular remodelingSpecific poolPhosphorylation
2016
Force regulated conformational change of integrin αVβ3
Chen Y, Lee H, Tong H, Schwartz M, Zhu C. Force regulated conformational change of integrin αVβ3. Matrix Biology 2016, 60: 70-85. PMID: 27423389, PMCID: PMC5237428, DOI: 10.1016/j.matbio.2016.07.002.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomechanical PhenomenaBiotinylationCell AdhesionCell LineEndothelial CellsErythrocytesExtracellular MatrixFibronectinsGene ExpressionGlassHumansIntegrin alphaVbeta3KineticsLungMiceMolecular ProbesPoint MutationProtein BindingProtein ConformationSignal TransductionSingle Molecule ImagingConceptsConformational changesTransduce signalsSingle-molecule levelIntegrin functionBiomembrane force probeMolecular machinesPhysiological functionsCell adhesionCell surfaceExtracellular matrixPoint mutationsConformational transitionIntegrinsEssential roleTumor metastasisExtended conformationConformationDynamic equilibriumEctodomainMutationsForce probePhagocytosisMembraneAngiogenesisFunctionEndothelial fluid shear stress sensing in vascular health and disease
Baeyens N, Bandyopadhyay C, Coon BG, Yun S, Schwartz MA. Endothelial fluid shear stress sensing in vascular health and disease. Journal Of Clinical Investigation 2016, 126: 821-828. PMID: 26928035, PMCID: PMC4767335, DOI: 10.1172/jci83083.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtherosclerosisBiomechanical PhenomenaEndothelium, VascularHumansMechanotransduction, CellularPlaque, AtheroscleroticVascular RemodelingConceptsNormal morphogenesisBiochemical signalsGene expressionSame pathwayFluid shear stressCell behaviorSpecialized mechanismsMorphogenesisPathwayPathological conditionsEndothelial cellsVascular physiologyVascular systemBasic mechanismsRecent advancesFlow signalingSignalingMechanismAdult lifePhysiologyExpressionBiomechanics of vascular mechanosensation and remodeling
Baeyens N, Schwartz MA. Biomechanics of vascular mechanosensation and remodeling. Molecular Biology Of The Cell 2016, 27: 7-11. PMID: 26715421, PMCID: PMC4694763, DOI: 10.1091/mbc.e14-11-1522.Peer-Reviewed Original Research
2015
Role of Mechanotransduction in Vascular Biology
Humphrey JD, Schwartz MA, Tellides G, Milewicz DM. Role of Mechanotransduction in Vascular Biology. Circulation Research 2015, 116: 1448-1461. PMID: 25858068, PMCID: PMC4420625, DOI: 10.1161/circresaha.114.304936.Peer-Reviewed Original ResearchConceptsExtracellular matrixRole of mechanotransductionExtracellular matrix constituentsActomyosin filamentsMembrane receptorsDysfunctional mechanosensingVascular biologyAortic aneurysmNew therapeutic strategiesContractile proteinsThoracic aortic aneurysmIntramural cellsCellsMechanobiological processesMatrix constituentsAcute dissectionAortic cellsAortic diseaseMechanosensingTherapeutic strategiesHemodynamic loadGenesProgressive enlargementReceptorsMechanoregulation
2014
Change of Direction in the Biomechanics of Atherosclerosis
Mohamied Y, Rowland EM, Bailey EL, Sherwin SJ, Schwartz MA, Weinberg PD. Change of Direction in the Biomechanics of Atherosclerosis. Annals Of Biomedical Engineering 2014, 43: 16-25. PMID: 25138165, PMCID: PMC4286626, DOI: 10.1007/s10439-014-1095-4.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaAtherosclerosisBiomechanical PhenomenaHemorheologyHumansHydrodynamicsMaleRabbitsConceptsLesion prevalenceEndothelial cellsAnti-inflammatory effectsPro-inflammatory effectsRank correlation coefficientAortic branch ostiaLesion locationRabbit aortaSpearman's rank correlation coefficientArterial systemPrevalenceBranch ostiumConfidence intervalsMature rabbitsAtherosclerosisTime-averaged wall shear stressAgeShear metrics
2012
The role of p21-activated kinase in the initiation of atherosclerosis
Jhaveri K, Debnath P, Chernoff J, Sanders J, Schwartz M. The role of p21-activated kinase in the initiation of atherosclerosis. BMC Cardiovascular Disorders 2012, 12: 55. PMID: 22824149, PMCID: PMC3489605, DOI: 10.1186/1471-2261-12-55.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAorta, ThoracicAortic DiseasesAtherosclerosisBiomechanical PhenomenaCells, CulturedDisease Models, AnimalEndothelial CellsFibronectinsGalectin 3ImmunohistochemistryInflammation MediatorsIntercellular Adhesion Molecule-1MaleMiceMice, Inbred C57BLMice, KnockoutP21-Activated KinasesRegional Blood FlowTranscription Factor RelBVascular Cell Adhesion Molecule-1ConceptsLesser curvatureNF-κB subunitsInflammatory activationEndothelial cellsAtherosclerosis-prone sitesPro-inflammatory functionsInflammatory marker expressionNormal chow dietArch of aortaInitiation of atherosclerosisInflammatory markersOverall inflammationChow dietInflammatory pathwaysYoung miceAtherosclerosis-susceptible regionsConclusionThese dataICAM-1VCAM-1NF-κBRelA NF-κB subunitMarker expressionLow levelsFibronectin depositionInflammationA novel in vitro flow system for changing flow direction on endothelial cells
Wang C, Lu H, Schwartz MA. A novel in vitro flow system for changing flow direction on endothelial cells. Journal Of Biomechanics 2012, 45: 1212-1218. PMID: 22386042, PMCID: PMC3327813, DOI: 10.1016/j.jbiomech.2012.01.045.Peer-Reviewed Original Research
2009
Cadherin Adhesion, Tissue Tension, and Noncanonical Wnt Signaling Regulate Fibronectin Matrix Organization
Dzamba BJ, Jakab KR, Marsden M, Schwartz MA, DeSimone DW. Cadherin Adhesion, Tissue Tension, and Noncanonical Wnt Signaling Regulate Fibronectin Matrix Organization. Developmental Cell 2009, 16: 421-432. PMID: 19289087, PMCID: PMC2682918, DOI: 10.1016/j.devcel.2009.01.008.Peer-Reviewed Original ResearchConceptsCadherin adhesionBlastocoel roofPlanar cell polarity signalingMatrix assemblyCell polarity signalingCell-cell adhesionFN fibril formationFN fibril assemblyPolarity signalingFocal adhesionsActin reorganizationXenopus embryosRegulatory pathwaysMyosin contractilityFibronectin matrixMatrix organizationSpatiotemporal localizationCultured cellsCell surfaceAnalogous roleFibril formationFibril assemblyFibrillar matrixMechanical tensionAssembly
2008
The Role of Cellular Adaptation to Mechanical Forces in Atherosclerosis
Hahn C, Schwartz MA. The Role of Cellular Adaptation to Mechanical Forces in Atherosclerosis. Arteriosclerosis Thrombosis And Vascular Biology 2008, 28: 2101-2107. PMID: 18787190, PMCID: PMC2737679, DOI: 10.1161/atvbaha.108.165951.Peer-Reviewed Original ResearchConceptsDisease progressionChronic inflammatory diseaseSystemic risk factorsInflammatory pathwaysInflammatory diseasesRisk factorsRegions of arteriesPlaque formationAtherosclerosisProgressionCellular adaptationPotential mechanosensorsAdaptive responseCellular responsesGene expressionHyperlipidemiaSubsequent changesSmokingDiabetesArteryPathwayDiseaseVasculatureResponse
2006
Integrating Adhesion, Protrusion, and Contraction during Cell Migration
Schwartz MA, Horwitz AR. Integrating Adhesion, Protrusion, and Contraction during Cell Migration. Cell 2006, 125: 1223-1225. PMID: 16814706, DOI: 10.1016/j.cell.2006.06.015.Peer-Reviewed Original Research