2024
Endothelial γ-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis
Joshi D, Coon B, Chakraborty R, Deng H, Yang Z, Babar M, Fernandez-Tussy P, Meredith E, Attanasio J, Joshi N, Traylor J, Orr A, Fernandez-Hernando C, Libreros S, Schwartz M. Endothelial γ-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis. Nature Cardiovascular Research 2024, 3: 1035-1048. PMID: 39232138, PMCID: PMC11399086, DOI: 10.1038/s44161-024-00522-z.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAtherosclerosisCadherin Related ProteinsCadherinsDisease Models, AnimalEndothelial CellsHuman Umbilical Vein Endothelial CellsHumansKruppel-Like Factor 4Kruppel-Like Transcription FactorsMaleMiceMice, Inbred C57BLMice, KnockoutPlaque, AtheroscleroticReceptors, NotchSignal TransductionConceptsAtherosclerotic cardiovascular diseaseIntracellular domainNotch intracellular domainTranscription factor KLF2Mechanisms of vascular inflammationAnti-inflammatory programVascular endothelial cellsHost defenseCleavage resultsAntibody blockadeGenetic deletionVascular inflammationViral infectionImmune systemEndothelial cellsCardiovascular diseasePromote atherosclerosisBlood flowKLF2KLF4Suppressive signalsEndotheliumMechanistic studies
2023
Altered Integrin Signaling in Thoracic Aortopathy
Humphrey J, Schwartz M. Altered Integrin Signaling in Thoracic Aortopathy. Arteriosclerosis Thrombosis And Vascular Biology 2023, 43: 1154-1156. PMID: 37165879, DOI: 10.1161/atvbaha.123.319404.Commentaries, Editorials and Letters
2022
High Fluid Shear Stress Inhibits Cytokine‐Driven Smad2/3 Activation in Vascular Endothelial Cells
Deng H, Schwartz MA. High Fluid Shear Stress Inhibits Cytokine‐Driven Smad2/3 Activation in Vascular Endothelial Cells. Journal Of The American Heart Association 2022, 11: e025337. PMID: 35861829, PMCID: PMC9707828, DOI: 10.1161/jaha.121.025337.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedCytokinesEndothelial CellsEpithelial-Mesenchymal TransitionMiceSignal TransductionStress, MechanicalConceptsInflammatory cytokinesSmad2/3 activationEndothelial cellsNuclear translocationInflammatory cytokine treatmentGrowth factor betaVascular endothelial cellsQuantitative polymerase chain reactionSmad2/3 nuclear translocationTarget gene expressionBackground AtherosclerosisInflammatory mediatorsInflammatory pathwaysPolymerase chain reactionResult of inhibitionCytokine treatmentInhibits CytokineFactor betaMesenchymal transitionHigh fluid shear stressCytokinesEndMTGene expressionLaminar fluid shear stressFluid shear stressFibronectin-Integrin α5 Signaling in Vascular Complications of Type 1 Diabetes.
Chen M, Hu R, Cavinato C, Zhuang ZW, Zhang J, Yun S, Fernandez Tussy P, Singh A, Murtada SI, Tanaka K, Liu M, Fernández-Hernando C, Humphrey JD, Schwartz MA. Fibronectin-Integrin α5 Signaling in Vascular Complications of Type 1 Diabetes. Diabetes 2022, 71: 2020-2033. PMID: 35771994, PMCID: PMC9450851, DOI: 10.2337/db21-0958.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCyclic Nucleotide Phosphodiesterases, Type 4Diabetes Mellitus, Type 1Endothelial CellsFibronectinsIntegrin alpha5MiceSignal TransductionConceptsVascular complicationsInjection of streptozotocinBlood flow recoveryHigh-fat dietType 1 diabetesInflammatory cell invasionIntegrin α5T1D miceVascular basement membraneVascular diseaseCarotid arteryHindlimb ischemiaMetalloproteinase expressionMain receptorType 1Plaque sizeBeneficial effectsEndothelial cellsMajor causeCell invasionExtracellular matrix proteinsHyperlipidemiaComplicationsBasement membraneT1D
2021
MEKK3–TGFβ crosstalk regulates inward arterial remodeling
Deng H, Xu Y, Hu X, Zhuang ZW, Chang Y, Wang Y, Ntokou A, Schwartz MA, Su B, Simons M. MEKK3–TGFβ crosstalk regulates inward arterial remodeling. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2112625118. PMID: 34911761, PMCID: PMC8713777, DOI: 10.1073/pnas.2112625118.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsGene DeletionGene Expression RegulationGenotypeHindlimbHuman Umbilical Vein Endothelial CellsHumansHypertension, PulmonaryIschemiaMAP Kinase Kinase Kinase 1MAP Kinase Kinase Kinase 3MiceReceptors, Transforming Growth Factor betaSelective Estrogen Receptor ModulatorsSignal TransductionTamoxifenTransforming Growth Factor betaVascular RemodelingConceptsArterial remodelingSuch common diseasesEndothelial-specific deletionActivation of TGFβArtery diseaseHyperlipidemic miceSpontaneous hypertensionInward remodelingAccelerated progressionArterial diameterVascular remodelingPathogenic importanceAdult miceKnockout miceVascular circuitPathologic conditionsCommon diseaseMAPK ERK1/2MiceRemodelingHypertensionAtherosclerosisControl of proliferationDiseaseProgressionTalin in mechanotransduction and mechanomemory at a glance
Goult BT, Brown NH, Schwartz MA. Talin in mechanotransduction and mechanomemory at a glance. Journal Of Cell Science 2021, 134: jcs258749. PMID: 34708856, PMCID: PMC8697387, DOI: 10.1242/jcs.258749.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesIntegrinsMechanotransduction, CellularProtein BindingSignal TransductionTalinConceptsHelical bundleHead domainC-terminal rod domainIntegrin conformational activationCytoskeletal linker proteinTerminal head domainExtracellular matrix proteinsCryptic binding sitesFlexible neck regionGlance articleAccompanying posterLinker proteinCytoplasmic tailConformational activationRod domainActin filamentsMatrix proteinsCell scienceTalinProteinBinding sitesDomain linksForce inducesDomainMechanotransductionActivation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling
Deng H, Min E, Baeyens N, Coon BG, Hu R, Zhuang ZW, Chen M, Huang B, Afolabi T, Zarkada G, Acheampong A, McEntee K, Eichmann A, Liu F, Su B, Simons M, Schwartz MA. Activation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2105339118. PMID: 34504019, PMCID: PMC8449390, DOI: 10.1073/pnas.2105339118.Peer-Reviewed Original ResearchConceptsLow fluid shear stressFluid shear stressNuclear translocationSmad linker regionTransmembrane protein Neuropilin-1Target gene expressionCyclin-dependent kinasesBone morphogenetic proteinEC-specific deletionSmad2/3 nuclear translocationNuclear localizationHigh fluid shear stressLinker regionMorphogenetic proteinsGene expressionRegulatory mechanismsActivation of Smad2/3Receptor ALK5Smad2/3 phosphorylationTranslocationCell sensingEndothelial cell (EC) sensingPhosphorylationALK5Smad2/3Vascular Mechanobiology: Homeostasis, Adaptation, and Disease
Humphrey JD, Schwartz MA. Vascular Mechanobiology: Homeostasis, Adaptation, and Disease. Annual Review Of Biomedical Engineering 2021, 23: 1-27. PMID: 34255994, PMCID: PMC8719655, DOI: 10.1146/annurev-bioeng-092419-060810.Peer-Reviewed Original ResearchConceptsArterial healthDisease progressionVascular wallTherapeutic needsHealthy vesselsHomeostatic mechanismsDiseaseVessel wallHomeostatic pathwaysPositive feedback loopWall mechanicsHomeostasisGene expressionOptimal functionMajor diseasesNegative feedback loopRegulatory pathwaysInflammationBiochemical meansArteryEarly events in endothelial flow sensing
Tanaka K, Joshi D, Timalsina S, Schwartz MA. Early events in endothelial flow sensing. Cytoskeleton 2021, 78: 217-231. PMID: 33543538, DOI: 10.1002/cm.21652.Peer-Reviewed Original ResearchMeSH KeywordsCytoskeletonEndothelial CellsMechanotransduction, CellularSignal TransductionStress, MechanicalConceptsFluid shear stressLymphatic endothelial cellsEndothelial cellsCytoskeletal pathwaysVascular morphogenesisBiochemical signalsGene expressionEC phenotypeLymphatic fluid flowEarly eventsPhysiologyImmediate mechanismPrimary mechanismRecent advancesMorphogenesisMechanotransductionSignalingPhenotypePathwayMechanismExpressionFlow sensingCellsImportant questions
2019
Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis
Chen PY, Qin L, Li G, Wang Z, Dahlman JE, Malagon-Lopez J, Gujja S, Cilfone N, Kauffman K, Sun L, Sun H, Zhang X, Aryal B, Canfran-Duque A, Liu R, Kusters P, Sehgal A, Jiao Y, Anderson D, Gulcher J, Fernandez-Hernando C, Lutgens E, Schwartz M, Pober J, Chittenden T, Tellides G, Simons M. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nature Metabolism 2019, 1: 912-926. PMID: 31572976, PMCID: PMC6767930, DOI: 10.1038/s42255-019-0102-3.Peer-Reviewed Original ResearchConceptsTGF-β signalingVascular inflammationDisease progressionPlaque growthProgressive vascular diseaseVessel wall inflammationChronic inflammatory responseSpecific therapeutic interventionsAtherosclerotic plaque growthHyperlipidemic micePlaque inflammationWall inflammationProinflammatory effectsVascular diseaseInflammatory responseVascular permeabilityAtherosclerotic plaquesAbnormal shear stressTherapeutic interventionsInflammationEndothelial TGFΒ signalingVessel wallAtherosclerosisLipid retentionMechanosensation of cyclical force by PIEZO1 is essential for innate immunity
Solis AG, Bielecki P, Steach HR, Sharma L, Harman CCD, Yun S, de Zoete MR, Warnock JN, To SDF, York AG, Mack M, Schwartz MA, Dela Cruz CS, Palm NW, Jackson R, Flavell RA. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 2019, 573: 69-74. PMID: 31435009, PMCID: PMC6939392, DOI: 10.1038/s41586-019-1485-8.Peer-Reviewed Original ResearchConceptsInnate immune cellsImmune cellsInflammatory responseInnate immune systemCyclical hydrostatic pressurePulmonary inflammationImmune responseImmune systemInnate immunityBacterial infectionsIon channel Piezo1InflammationPhysiological fluctuationsImmunityPhysiological roleLocal microenvironmentCellsPiezo1Direct recognitionResponseAutoinflammationLungInfectionMiceARHGAP18: A Flow‐Responsive Gene That Regulates Endothelial Cell Alignment and Protects Against Atherosclerosis
Lay AJ, Coleman PR, Formaz‐Preston A, Ting KK, Roediger B, Weninger W, Schwartz MA, Vadas MA, Gamble JR. ARHGAP18: A Flow‐Responsive Gene That Regulates Endothelial Cell Alignment and Protects Against Atherosclerosis. Journal Of The American Heart Association 2019, 8: e010057. PMID: 30630384, PMCID: PMC6497359, DOI: 10.1161/jaha.118.010057.Peer-Reviewed Original ResearchConceptsApolipoprotein EHigh-fat diet-induced modelIntercellular adhesion molecule-1Endothelial nitric oxide synthaseHigh-fat dietDevelopment of atherosclerosisNitric oxide synthaseDiet-induced modelAdhesion molecule-1Double mutant miceAortic diseaseAtherosclerosis developmentInflammatory phenotypeOxide synthaseMolecule-1AtherosclerosisEarly onsetProtective genesMiceFlow-responsive genesAtheroprotective regionsEndothelial cell alignmentAdaptive responseAnalysis of ECEC ability
2018
hMENA isoforms impact NSCLC patient outcome through fibronectin/β1 integrin axis
Di Modugno F, Spada S, Palermo B, Visca P, Iapicca P, Di Carlo A, Antoniani B, Sperduti I, Di Benedetto A, Terrenato I, Mottolese M, Gandolfi F, Facciolo F, Chen EI, Schwartz MA, Santoni A, Bissell MJ, Nisticò P. hMENA isoforms impact NSCLC patient outcome through fibronectin/β1 integrin axis. Oncogene 2018, 37: 5605-5617. PMID: 29907768, PMCID: PMC6193944, DOI: 10.1038/s41388-018-0364-3.Peer-Reviewed Original ResearchConceptsCell lung cancer patientsNSCLC patient outcomeFavorable clinical outcomeLung cancer patientsMechanism of actionClinical outcomesCancer patientsStromal fibronectinClinical managementTranscription factor 1Patient outcomesPatient riskΒ1 integrin expressionIntegrin axisNuclear expressionIntegrin expressionCell invasivenessCancer cellsFibronectin productionExtracellular matrix componentsFactor 1G-actin/F-actin ratioΒ1 integrin activationΒ1 integrin ligandsHMenaInhibiting Integrin α5 Cytoplasmic Domain Signaling Reduces Atherosclerosis and Promotes Arteriogenesis
Budatha M, Zhang J, Zhuang ZW, Yun S, Dahlman JE, Anderson DG, Schwartz MA. Inhibiting Integrin α5 Cytoplasmic Domain Signaling Reduces Atherosclerosis and Promotes Arteriogenesis. Journal Of The American Heart Association 2018, 7: e007501. PMID: 29382667, PMCID: PMC5850249, DOI: 10.1161/jaha.117.007501.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaAortic DiseasesAtherosclerosisCyclic Nucleotide Phosphodiesterases, Type 4Disease Models, AnimalExtracellular MatrixFibronectinsFibrosisGenetic Predisposition to DiseaseHindlimbInflammation MediatorsIntegrin alpha2Integrin alpha5IschemiaLeukocytesMaleMatrix MetalloproteinasesMice, Inbred C57BLMice, Knockout, ApoEMuscle, SkeletalNeovascularization, PhysiologicNF-kappa BPhenotypePlaque, AtheroscleroticSignal TransductionVascular RemodelingConceptsEndothelial inflammatory activationAtherosclerotic plaque sizeInflammatory activationPlaque stabilityVascular remodelingEndothelial NF-κB activationSmooth muscle cell contentPlaque sizeFemoral artery ligationMuscle cell contentTreatment of atherosclerosisInflammatory gene expressionPotential therapeutic targetFibrous cap thicknessNF-κB activationSmaller atherosclerotic plaquesArtery ligationAortic rootHindlimb ischemiaCompensatory remodelingAtherosclerotic plaquesTherapeutic targetLeukocyte contentMetalloproteinase expressionEndothelial basement membrane
2017
VE-Cadherin Phosphorylation Regulates Endothelial Fluid Shear Stress Responses through the Polarity Protein LGN
Conway DE, Coon BG, Budatha M, Arsenovic PT, Orsenigo F, Wessel F, Zhang J, Zhuang Z, Dejana E, Vestweber D, Schwartz MA. VE-Cadherin Phosphorylation Regulates Endothelial Fluid Shear Stress Responses through the Polarity Protein LGN. Current Biology 2017, 27: 2219-2225.e5. PMID: 28712573, PMCID: PMC5667920, DOI: 10.1016/j.cub.2017.06.020.Peer-Reviewed Original ResearchConceptsSrc family kinasesProtein LGNCytoplasmic tyrosinesVE-cadherinVascular endothelial growth factor receptorVE-cadherin functionJunctional complexesRespective cytoplasmic domainsBlood vessel developmentVE-cadherin phosphorylationTransduce forcesTransduce signalsCytoplasmic domainFamily kinasesBlood vessel remodelingGrowth factor receptorVEGFR activationPECAM-1Stress responseComplex consistingFluid shear stressVessel developmentFlow-dependent vascular remodelingSpecific poolPhosphorylation
2016
Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia
Baeyens N, Larrivée B, Ola R, Hayward-Piatkowskyi B, Dubrac A, Huang B, Ross TD, Coon BG, Min E, Tsarfati M, Tong H, Eichmann A, Schwartz MA. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. Journal Of Cell Biology 2016, 214: 807-816. PMID: 27646277, PMCID: PMC5037412, DOI: 10.1083/jcb.201603106.Peer-Reviewed Original ResearchActivin Receptors, Type IIArteriovenous MalformationsArteriovenous Shunt, SurgicalBone Morphogenetic ProteinsCell ProliferationEndoglinEndothelial CellsGene DeletionHEK293 CellsHemorheologyHuman Umbilical Vein Endothelial CellsHumansMechanotransduction, CellularPericytesRegional Blood FlowRetinaSignal TransductionSolubilityStress, MechanicalTelangiectasia, Hereditary HemorrhagicInteraction between integrin α5 and PDE4D regulates endothelial inflammatory signalling
Yun S, Budatha M, Dahlman JE, Coon BG, Cameron RT, Langer R, Anderson DG, Baillie G, Schwartz MA. Interaction between integrin α5 and PDE4D regulates endothelial inflammatory signalling. Nature Cell Biology 2016, 18: 1043-1053. PMID: 27595237, PMCID: PMC5301150, DOI: 10.1038/ncb3405.Peer-Reviewed Original ResearchConceptsInflammatory signalingIntegrin α5Enhanced phosphodiesterase activityExtracellular matrix remodellingModulates inflammationTherapeutic targetInflammationProstacyclin secretionLipid metabolismEndothelial cellsMatrix remodellingVivo knockdownECM remodellingBasement membraneIntegrin α2Phosphodiesterase activityMolecular mechanismsRemodellingΑ5Direct bindingSignalingCellsFibronectinAtherosclerosisArteryIon Channels in Endothelial Responses to Fluid Shear Stress
Gerhold KA, Schwartz MA. Ion Channels in Endothelial Responses to Fluid Shear Stress. Physiology 2016, 31: 359-369. PMID: 27511462, PMCID: PMC5504459, DOI: 10.1152/physiol.00007.2016.Peer-Reviewed Original ResearchForce regulated conformational change of integrin αVβ3
Chen Y, Lee H, Tong H, Schwartz M, Zhu C. Force regulated conformational change of integrin αVβ3. Matrix Biology 2016, 60: 70-85. PMID: 27423389, PMCID: PMC5237428, DOI: 10.1016/j.matbio.2016.07.002.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomechanical PhenomenaBiotinylationCell AdhesionCell LineEndothelial CellsErythrocytesExtracellular MatrixFibronectinsGene ExpressionGlassHumansIntegrin alphaVbeta3KineticsLungMiceMolecular ProbesPoint MutationProtein BindingProtein ConformationSignal TransductionSingle Molecule ImagingConceptsConformational changesTransduce signalsSingle-molecule levelIntegrin functionBiomembrane force probeMolecular machinesPhysiological functionsCell adhesionCell surfaceExtracellular matrixPoint mutationsConformational transitionIntegrinsEssential roleTumor metastasisExtended conformationConformationDynamic equilibriumEctodomainMutationsForce probePhagocytosisMembraneAngiogenesisFunctionRal-Arf6 crosstalk regulates Ral dependent exocyst trafficking and anchorage independent growth signalling
Pawar A, Meier JA, Dasgupta A, Diwanji N, Deshpande N, Saxena K, Buwa N, Inchanalkar S, Schwartz MA, Balasubramanian N. Ral-Arf6 crosstalk regulates Ral dependent exocyst trafficking and anchorage independent growth signalling. Cellular Signalling 2016, 28: 1225-1236. PMID: 27269287, PMCID: PMC4973806, DOI: 10.1016/j.cellsig.2016.05.023.Peer-Reviewed Original ResearchMeSH KeywordsADP-Ribosylation Factor 6ADP-Ribosylation FactorsAnimalsCell AdhesionCell Line, TumorCell ProliferationCell Transformation, NeoplasticEmbryo, MammalianExocytosisExtracellular Signal-Regulated MAP KinasesFibroblastsHumansMembrane MicrodomainsMiceProtein TransportRal GTP-Binding ProteinsSignal TransductionConceptsARF6 activationRegulatory crosstalkActive RalIntegrin-dependent regulationOncogenic H-RasIndependent growthIntegrin-dependent activationAdhesion-dependent pathwayKey downstream mediatorSmall GTPase RalActive RalABladder cancer T24 cellsDependent traffickingRal functionIsoforms functionRaft microdomainsOncogenic RasPlasma membraneDependent regulationH-RasArf6Dependent activationDependent pathwayDownstream mediatorVital mediators