Featured Publications
Within-host evolution of a gut pathobiont facilitates liver translocation
Yang Y, Nguyen M, Khetrapal V, Sonnert ND, Martin AL, Chen H, Kriegel MA, Palm NW. Within-host evolution of a gut pathobiont facilitates liver translocation. Nature 2022, 607: 563-570. PMID: 35831502, PMCID: PMC9308686, DOI: 10.1038/s41586-022-04949-x.Peer-Reviewed Original ResearchConceptsHost evolutionGene expression programsCell wall structureNon-synonymous mutationsComparative genomicsIndependent lineagesExperimental evolutionExpression programsDivergent evolutionRegulatory genesBacterial behaviorCritical regulatorBacterial translocationGut commensalsTranslocationE. gallinarumMesenteric lymph nodesInitiation of inflammationImmune evasionWall structureEvade DetectionMucosal nicheLactobacillus reuteriCommensalGut microbiotaPathogenic Autoreactive T and B Cells Cross-React with Mimotopes Expressed by a Common Human Gut Commensal to Trigger Autoimmunity
Ruff WE, Dehner C, Kim WJ, Pagovich O, Aguiar CL, Yu AT, Roth AS, Vieira SM, Kriegel C, Adeniyi O, Mulla MJ, Abrahams VM, Kwok WW, Nussinov R, Erkan D, Goodman AL, Kriegel MA. Pathogenic Autoreactive T and B Cells Cross-React with Mimotopes Expressed by a Common Human Gut Commensal to Trigger Autoimmunity. Cell Host & Microbe 2019, 26: 100-113.e8. PMID: 31227334, PMCID: PMC8194364, DOI: 10.1016/j.chom.2019.05.003.Peer-Reviewed Original ResearchConceptsAntiphospholipid syndromePathogenic monoclonal antibodyHuman autoimmune diseasesGut commensalsB-cell autoepitopesHuman gut commensalGPI IgGAPS patientsIgG titersOral gavageMemory TSusceptible miceAntigenic loadAutoimmune diseasesAutoimmune pathologyTrigger autoimmunityHuman autoimmunityGlycoprotein IGPI autoantibodiesAutoimmunityMonoclonal antibodiesCell clonesCross reactMimotopesAutoantibodiesA Diet-Sensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity
Zegarra-Ruiz DF, Beidaq A, Iñiguez AJ, Di Ricco M, Vieira S, Ruff WE, Mubiru D, Fine RL, Sterpka J, Greiling TM, Dehner C, Kriegel MA. A Diet-Sensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity. Cell Host & Microbe 2018, 25: 113-127.e6. PMID: 30581114, PMCID: PMC6377154, DOI: 10.1016/j.chom.2018.11.009.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAutoimmunityClostridiaceaeDendritic CellsDietDiet TherapyDisease Models, AnimalDNA, RibosomalFatty Acids, VolatileFecesFemaleGastrointestinal MicrobiomeGerm-Free LifeGlomerulonephritisHumansHypersensitivityInterferon Type IKidneyLactobacillusLimosilactobacillus reuteriLupus Erythematosus, SystemicMembrane GlycoproteinsMiceMice, Inbred C57BLRNA, Ribosomal, 16SStarchSurvival RateToll-Like Receptor 7ConceptsPlasmacytoid dendritic cellsSystemic lupus erythematosusInterferon pathwayToll-like receptor 7L. reuteri colonizationGut microbiota compositionDietary resistant starchShort-chain fatty acidsAutoimmune manifestationsDependent mouse modelSLE patientsOrgan involvementDendritic cellsLupus erythematosusReceptor 7Systemic autoimmunityHuman autoimmunityMouse modelGut microbiotaMetabolic diseasesMicrobiota compositionWestern lifestyleAutoimmunityDietary effectsBeneficial effectsCommensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus
Greiling TM, Dehner C, Chen X, Hughes K, Iñiguez AJ, Boccitto M, Ruiz DZ, Renfroe SC, Vieira SM, Ruff WE, Sim S, Kriegel C, Glanternik J, Chen X, Girardi M, Degnan P, Costenbader KH, Goodman AL, Wolin SL, Kriegel MA. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Science Translational Medicine 2018, 10 PMID: 29593104, PMCID: PMC5918293, DOI: 10.1126/scitranslmed.aan2306.Peer-Reviewed Original ResearchConceptsLupus patientsGlomerular immune complex depositsPositive lupus patientsImmune complex depositsGerm-free miceSigns of autoimmunityB cell responsesT cell clonesNovel treatment approachesTriggers of autoimmunityCommensal bacterial speciesEarliest autoantibodiesChronic autoimmunityAutoimmune diseasesHealthy controlsT cellsTreatment approachesSusceptible individualsAutoimmunityCell responsesCommensal speciesLupusPatientsCell clonesGut commensalsTranslocation of a gut pathobiont drives autoimmunity in mice and humans
Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Khan N, Costa FRC, Tiniakou E, Greiling T, Ruff W, Barbieri A, Kriegel C, Mehta SS, Knight JR, Jain D, Goodman AL, Kriegel MA. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 2018, 359: 1156-1161. PMID: 29590047, PMCID: PMC5959731, DOI: 10.1126/science.aar7201.Peer-Reviewed Original ResearchConceptsGut pathobiontAutoimmune-prone miceMurine findingsIntramuscular vaccinePathogenic autoantibodiesLiver biopsyAutoimmune responseAutoimmune patientsAntibiotic treatmentT cellsImmune diseasesAutoimmunitySusceptible humansPathobiontsSystemic tissuesHuman hepatocytesAutoantibodiesMortalityMiceCocultureHepatocytesGenetic backgroundTissueBiopsyPatients
2024
A concept for non-uniform thermal irradiation emulation in an immersive virtual environment
Tawackolian K, Schmitt L, Kriegel M. A concept for non-uniform thermal irradiation emulation in an immersive virtual environment. Energy And Buildings 2024, 322: 114748. DOI: 10.1016/j.enbuild.2024.114748.Peer-Reviewed Original ResearchPhysical mock-upsRadiant temperatureThermal environmentVirtual environmentConventional climatic chamberIndoor thermal environmentMock-upHuman thermal environmentAir conditioning systemNon-uniform environmentSupply air diffusersAir temperatureImmersive virtual environmentResults of computational fluid dynamics simulationsThermal sensationArbitrary indoor environmentHead-mounted displayConditioning systemRoom geometrySquare errorIndoor environmentAir diffusionHumidity controlComputational fluid dynamics simulationsEmulation environmentLupus and inflammatory bowel disease share a common set of microbiome features distinct from other autoimmune disorders.
Zhou H, Balint D, Shi Q, Vartanian T, Kriegel M, Brito I. Lupus and inflammatory bowel disease share a common set of microbiome features distinct from other autoimmune disorders. Annals Of The Rheumatic Diseases 2024, ard-2024-225829. PMID: 39299726, DOI: 10.1136/ard-2024-225829.Peer-Reviewed Original ResearchProtein-protein interaction analysisMicrobial signaturesMicrobial profilesEffector-like proteinsSignaling pathwayInterleukin-12 signaling pathwayDisease mechanismsBacteria-derived proteinsMetagenomic datasetsMicrobiome featuresMicrobial underpinningsFunctional genesMicrobial biomarkersInteraction analysisMicrobial influenceInflammatory bowel diseaseMicrobial mechanismsGlucocorticoid signalingProteinGlucocorticoid receptorCritical roleAutoimmune diseasesPathwayBowel diseasePotential importance
2023
Translocating Lactobacillus torments tumors via tryptophan catabolism
Pereira M, Kriegel M. Translocating Lactobacillus torments tumors via tryptophan catabolism. Cell 2023, 186: 1821-1823. PMID: 37116468, DOI: 10.1016/j.cell.2023.03.022.Peer-Reviewed Original Research
2022
Subdoligranulum chews up joints: how a gut pathobiont can instigate arthritis
Kriegel M. Subdoligranulum chews up joints: how a gut pathobiont can instigate arthritis. Trends In Immunology 2022, 44: 4-6. PMID: 36494272, DOI: 10.1016/j.it.2022.11.006.Commentaries, Editorials and LettersConceptsRheumatoid arthritisSystemic autoimmune responseCertain autoimmune diseasesGnotobiotic mouse modelGut pathobiontSynovial inflammationAutoimmune responseAutoimmune diseasesMouse modelMonoclonal autoantibodiesArthritisGut commensalsHuman gut commensalAutoantibodiesOrigin hypothesisInflammationPathobiontsDiseaseSubdoligranulumEvolving concepts of host–pathobiont interactions in autoimmunity
Pereira M, Kriegel M. Evolving concepts of host–pathobiont interactions in autoimmunity. Current Opinion In Immunology 2022, 80: 102265. PMID: 36444784, DOI: 10.1016/j.coi.2022.102265.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsAutoimmune diseasesSecondary lymphoid tissuesUnconventional therapeutic approachesAutoimmune pathwaysMucosal sitesLymphoid tissueMultistep pathogenesisTherapeutic approachesImmune functionMultifactorial diseaseDiseasePathobiontsSecretion of metabolitesNon-gut tissuesHuman microbiomeTissueAutoimmunityAutoantigensPathogenesisEnvironmental factorsSecretionStructural host immune-microbiota interactions
Brito IL, Kriegel MA. Structural host immune-microbiota interactions. Current Opinion In Structural Biology 2022, 76: 102445. PMID: 36063760, DOI: 10.1016/j.sbi.2022.102445.Peer-Reviewed Original Research
2021
Malignant T Cell Activation by a Bacillus Species Isolated from Cutaneous T-Cell Lymphoma Lesions
Dehner CA, Ruff WE, Greiling T, Pereira MS, Redanz S, McNiff J, Girardi M, Kriegel MA. Malignant T Cell Activation by a Bacillus Species Isolated from Cutaneous T-Cell Lymphoma Lesions. JID Innovations 2021, 2: 100084. PMID: 35199089, PMCID: PMC8844718, DOI: 10.1016/j.xjidi.2021.100084.Peer-Reviewed Original ResearchCutaneous T-cell lymphomaT cell activationSkin microbiotaAppropriate genetic backgroundCell activationBacillus speciesCutaneous T-cell lymphoma lesionsUnique microbiotaHuman commensalGenetic backgroundCell explantsClonal T-cell proliferationSkin-homing CD4T-cell lymphomaAdaptive immune responsesCell interactionsT cell proliferationT cell interactionsEnvironmental factorsMicrobial triggersMicrobiotaCommensalCTCL lesionsLymphoma lesionsCytokine secretion1504 The influence of dietary resistant starch content on the gut microbiota of patients with systemic lupus erythematosus and antiphospholipid syndrome
Kulyk I, Pereira M, Redanz S, Ruff W, Greiling T, Dehner C, Pagovich O, Ruiz D, Aguiar C, Erkan D, Kriegel M. 1504 The influence of dietary resistant starch content on the gut microbiota of patients with systemic lupus erythematosus and antiphospholipid syndrome. Lupus Science & Medicine 2021, 8: a63-a64. DOI: 10.1136/lupus-2021-lupus21century.87.Peer-Reviewed Original ResearchDevelopment of a New International Antiphospholipid Syndrome Classification Criteria Phase I/II Report: Generation and Reduction of Candidate Criteria
Barbhaiya M, Zuily S, Ahmadzadeh Y, Amigo M, Avcin T, Bertolaccini M, Branch D, Jesus G, Devreese K, Frances C, Garcia D, Guillemin F, Levine S, Levy R, Lockshin M, Ortel T, Seshan S, Tektonidou M, Wahl D, Willis R, Naden R, Costenbader K, Erkan D, Agmon‐Levin N, Aguilar C, Alba P, Alpan O, Ambrozic A, Amoura Z, Andrade D, Andrade L, Appenzeller S, Esen B, Atsumi T, Berkun Y, Cabral A, Canaud G, Cervera R, Chen P, Chighizola C, Cimaz R, Cohen H, Costedoat‐Chalumeau N, Crowther M, Cuadrado M, de Groot P, de Moerloose P, Derksen R, Diz‐Kucukkaya R, Dörner T, Fortin P, Giannakopoulos B, Gómez‐Puerta J, Gonzalez E, Inanc M, Kenet G, Khamashta M, Kriegel M, Krilis S, Laskin C, Massicotte P, McCarty G, Meroni P, Mikdashi J, Myones B, Pengo V, Petri M, Roubey R, Sammaritano L, Sanna G, Sciascia S, Signorelli F, Soybilgic A, Tincani A, Woller S, Yelnik C. Development of a New International Antiphospholipid Syndrome Classification Criteria Phase I/II Report: Generation and Reduction of Candidate Criteria. Arthritis Care & Research 2021, 73: 1490-1501. PMID: 33253499, PMCID: PMC8966711, DOI: 10.1002/acr.24520.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsAntiphospholipid syndromeAPS classificationPhase IAPS classification criteriaCandidate criteriaPhase IIClassification criteriaItem reduction techniquesAmerican CollegeNominal group techniqueDelphi exerciseMultidisciplinary initiativeLaboratory domainHigher likelihoodRheumatologyCase collectionSystematic literature reviewPhysician scientistsPresent studyEuropean AllianceAggregate scoreLiterature reviewConsensus-based approachChapter 25 Microbiota influences on systemic lupus erythematosus and Sjögren’s syndrome
Greiling T, Vieira S, Kriegel M. Chapter 25 Microbiota influences on systemic lupus erythematosus and Sjögren’s syndrome. 2021, 211-221. DOI: 10.1016/b978-0-12-814551-7.00025-8.Peer-Reviewed Original ResearchSystemic lupus erythematosusSjögren's syndromeLupus erythematosusSystemic autoimmunityAdaptive immune responsesPathogenesis of autoimmunityToll-like receptorsProne hostsBarrier organsImmune responseAdaptive immunityInnate triggersAnimal modelsMicrobiota influenceCommensal bacteriaSyndromeMucus membranesAutoimmunityHuman autoantigensErythematosusPathogenesisMicrobiotaLive bacteriaHost tissuesInflammationChapter 9 Immunopathogenesis: the role of mucosal and skin microbiota in SLE
Greiling T, Kriegel M. Chapter 9 Immunopathogenesis: the role of mucosal and skin microbiota in SLE. 2021, 117-130. DOI: 10.1016/b978-0-12-820583-9.00012-9.Peer-Reviewed Original Research
2020
Host–microbiota interactions in immune-mediated diseases
Ruff WE, Greiling TM, Kriegel MA. Host–microbiota interactions in immune-mediated diseases. Nature Reviews Microbiology 2020, 18: 521-538. PMID: 32457482, DOI: 10.1038/s41579-020-0367-2.Peer-Reviewed Original ResearchConceptsImmune-mediated diseasesHost-microbiota interactionsImmune systemChronic inflammatory disordersSkin microbiotaHost immune systemProne hostsImmune toleranceInflammatory disordersTherapeutic avenuesDiseaseHost-microorganism interactionsMicrobiotaGnotobiotic modelsMolecular mechanismsBarrier surfacesNew studiesUrgent needMucosal
2018
Spontaneous translocation of a human enterococcal gut pathobiont drives systemic autoimmunity
Vieira S, Hiltensperger M, Kumar V, Zegarra-Ruiz D, Dehner C, Barbieri A, Jain D, Goodman A, Kriegel M. Spontaneous translocation of a human enterococcal gut pathobiont drives systemic autoimmunity. The Journal Of Immunology 2018, 200: 162.10-162.10. DOI: 10.4049/jimmunol.200.supp.162.10.Peer-Reviewed Original ResearchHost-microbiota interactionsOral vancomycin treatmentInduction of autoantibodiesPlasmacytoid dendritic cellsMesenteric lymph nodesPathogenesis of autoimmunityE. gallinarumAutoimmune hepatitisTfh cellsLupus patientsOrgan manifestationsPathogenic autoantibodiesDendritic cellsLymph nodesCytokines IFNGut barrierVancomycin treatmentC57BL/6 animalsSystemic autoimmunityInduction of moleculesLiver tissueAutoimmunityAhR pathwayBarrier functionMucus layerGut pathobiont translocation induces lymphocyte migration to internal organs in autoimmunity
Fine R, Vieira S, Ruiz D, Kriegel M. Gut pathobiont translocation induces lymphocyte migration to internal organs in autoimmunity. The Journal Of Immunology 2018, 200: 102.16-102.16. DOI: 10.4049/jimmunol.200.supp.102.16.Peer-Reviewed Original ResearchC57BL/6 miceT cellsLymphocyte migrationInternal organsE. gallinarumProne C57BL/6 miceSystemic autoimmune diseaseSecondary lymphoid organsAutoimmune-prone (NZB/NZW) F1 miceGut homingGut pathobiontOral antibioticsSplenic CD4Autoantibody productionHost-microbiota interactionsAutoimmune diseasesSystemic autoimmunityLymphoid organsPeyer's patchesF1 miceMouse modelAutoimmunityPathobiontsMiceLymphocytesGut commensal-dependent production of autoantibodies against the primordial lupus autoantigen Ro60 in the absence of mammalian Ro60.
Datta R, Dehner C, Ruff W, Greiling T, Kriegel M. Gut commensal-dependent production of autoantibodies against the primordial lupus autoantigen Ro60 in the absence of mammalian Ro60. The Journal Of Immunology 2018, 200: 162.11-162.11. DOI: 10.4049/jimmunol.200.supp.162.11.Peer-Reviewed Original ResearchAnti-Ro60 autoantibodiesSystemic lupus erythematosusB6 miceGut microbiotaSLE-like diseaseTraditional risk factorsDevelopment of lupusBroad-spectrum antibioticsMurine gut microbiotaLupus erythematosusAntigenic triggerAutoimmune responseTg miceInterventional studyKO miceRisk factorsIgG ELISAAutoantibody inductionDisease manifestationsOral administrationT cellsAutoantibodiesMiceRo60Lupus