2023
Circulating tumor DNA reveals mechanisms of lorlatinib resistance in patients with relapsed/refractory ALK-driven neuroblastoma
Berko E, Witek G, Matkar S, Petrova Z, Wu M, Smith C, Daniels A, Kalna J, Kennedy A, Gostuski I, Casey C, Krytska K, Gerelus M, Pavlick D, Ghazarian S, Park J, Marachelian A, Maris J, Goldsmith K, Radhakrishnan R, Lemmon M, Mossé Y. Circulating tumor DNA reveals mechanisms of lorlatinib resistance in patients with relapsed/refractory ALK-driven neuroblastoma. Nature Communications 2023, 14: 2601. PMID: 37147298, PMCID: PMC10163008, DOI: 10.1038/s41467-023-38195-0.Peer-Reviewed Original ResearchConceptsAnaplastic lymphoma kinaseLorlatinib resistanceTumor DNAPhase 1 trialCirculating tumor DNAPre-clinical studiesResistance mechanismsTumor DNA samplesALK mutationsDisease progressionHeterogeneity of tumorsClinical utilityRAS-MAPK pathwayTherapeutic strategiesLymphoma kinasePatientsResistance mutationsNeuroblastomaProgressionTrialsMutationsBiochemical assaysDNA samplesPoint mutationsLorlatinibEfficacy of Osimertinib in Patients with Lung Cancer Positive for Uncommon EGFR Exon 19 Deletion Mutations
Grant M, Aredo J, Starrett J, Stockhammer P, van Rosenburgh I, Wurtz A, Piper-Valillo A, Piotrowska Z, Falcon C, Yu H, Aggarwal C, Scholes D, Patil T, Nguyen C, Phadke M, Li F, Neal J, Lemmon M, Walther Z, Politi K, Goldberg S. Efficacy of Osimertinib in Patients with Lung Cancer Positive for Uncommon EGFR Exon 19 Deletion Mutations. Clinical Cancer Research 2023, 29: of1-of8. PMID: 36913537, PMCID: PMC10493186, DOI: 10.1158/1078-0432.ccr-22-3497.Peer-Reviewed Original ResearchConceptsProgression-free survivalNon-small cell lung cancerInferior progression-free survivalMulticenter retrospective cohortEfficacy of osimertinibMulti-institutional cohortCell lung cancerExon 19 deletion mutationUncommon EGFRRetrospective cohortClinical outcomesClinical efficacyLung cancerOsimertinib efficacyEGFR mutationsPreclinical modelsEx19delPatientsAACR Genie databaseLater linesOsimertinibMutant cohortFirst lineCohortEfficacy
2022
Biochemical and structural basis for differential inhibitor sensitivity of EGFR with distinct exon 19 mutations
van Alderwerelt van Rosenburgh I, Lu D, Grant M, Stayrook S, Phadke M, Walther Z, Goldberg S, Politi K, Lemmon M, Ashtekar K, Tsutsui Y. Biochemical and structural basis for differential inhibitor sensitivity of EGFR with distinct exon 19 mutations. Nature Communications 2022, 13: 6791. PMID: 36357385, PMCID: PMC9649653, DOI: 10.1038/s41467-022-34398-z.Peer-Reviewed Original ResearchGlioblastoma mutations alter EGFR dimer structure to prevent ligand bias
Hu C, Leche CA, Kiyatkin A, Yu Z, Stayrook SE, Ferguson KM, Lemmon MA. Glioblastoma mutations alter EGFR dimer structure to prevent ligand bias. Nature 2022, 602: 518-522. PMID: 35140400, PMCID: PMC8857055, DOI: 10.1038/s41586-021-04393-3.Peer-Reviewed Original Research
2021
Phosphatidylserine binding directly regulates TIM-3 function
Smith CM, Li A, Krishnamurthy N, Lemmon MA. Phosphatidylserine binding directly regulates TIM-3 function. Biochemical Journal 2021, 478: 3331-3349. PMID: 34435619, PMCID: PMC8454703, DOI: 10.1042/bcj20210425.Peer-Reviewed Original ResearchConceptsTim-3T cell receptorTherapeutic targetCo-signaling receptorsTim-3 functionTim-3 ligandTim-3 signalingCo-inhibitory receptorsCo-stimulatory receptorsImmune modulation approachesIL-2 secretionPotential therapeutic targetNF-κB signalingImportant therapeutic targetPD-1Jurkat cellsCultured Jurkat cellsT cellsCell receptorTCR stimulationReceptorsImportance of phosphatidylserineDifferent studiesCellsSignalingComputational studies of anaplastic lymphoma kinase mutations reveal common mechanisms of oncogenic activation
Patil K, Jordan EJ, Park JH, Suresh K, Smith CM, Lemmon AA, Mossé YP, Lemmon MA, Radhakrishnan R. Computational studies of anaplastic lymphoma kinase mutations reveal common mechanisms of oncogenic activation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2019132118. PMID: 33674381, PMCID: PMC7958353, DOI: 10.1073/pnas.2019132118.Peer-Reviewed Original Research
2020
Kinetics of receptor tyrosine kinase activation define ERK signaling dynamics
Kiyatkin A, van Alderwerelt van Rosenburgh IK, Klein DE, Lemmon MA. Kinetics of receptor tyrosine kinase activation define ERK signaling dynamics. Science Signaling 2020, 13 PMID: 32817373, PMCID: PMC7521189, DOI: 10.1126/scisignal.aaz5267.Peer-Reviewed Original ResearchStructural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases
Sheetz JB, Mathea S, Karvonen H, Malhotra K, Chatterjee D, Niininen W, Perttilä R, Preuss F, Suresh K, Stayrook SE, Tsutsui Y, Radhakrishnan R, Ungureanu D, Knapp S, Lemmon MA. Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. Molecular Cell 2020, 79: 390-405.e7. PMID: 32619402, PMCID: PMC7543951, DOI: 10.1016/j.molcel.2020.06.018.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBaculoviridaeBinding SitesCell Adhesion MoleculesCell LineCloning, MolecularCrystallography, X-RayGene ExpressionHumansMiceModels, MolecularPrecursor Cells, B-LymphoidProtein BindingProtein Conformation, alpha-HelicalProtein Conformation, beta-StrandProtein Interaction Domains and MotifsProtein Kinase InhibitorsReceptor Protein-Tyrosine KinasesReceptor Tyrosine Kinase-like Orphan ReceptorsReceptors, Eph FamilyRecombinant ProteinsSf9 CellsSmall Molecule LibrariesSpodopteraStructural Homology, ProteinSubstrate SpecificityConceptsInsulin receptor kinasePseudokinase domainReceptor tyrosine kinasesTyrosine kinaseNon-catalytic functionsATP-binding pocketType II inhibitorsDomain plasticityActivation loopReceptor kinaseInactive conformationStructural insightsPseudokinasesATP siteStructural comparisonAromatic residuesKinaseAlternative interactionsApparent lackImportant roleDomainWntMotifROR1Residues
2019
Computational algorithms for in silico profiling of activating mutations in cancer
Jordan EJ, Patil K, Suresh K, Park JH, Mosse YP, Lemmon MA, Radhakrishnan R. Computational algorithms for in silico profiling of activating mutations in cancer. Cellular And Molecular Life Sciences 2019, 76: 2663-2679. PMID: 30982079, PMCID: PMC6589134, DOI: 10.1007/s00018-019-03097-2.Peer-Reviewed Original ResearchConceptsTarget proteinsSingle nucleotide polymorphismsB-RafSerine/threonine-protein kinase B-RafDifferent target proteinsEffects of mutationsStructure-based computational approachKinase domainStructure-based methodsStructure-based modelProtein structureProtein activationSilico profilingAnaplastic lymphoma kinaseInteraction of inhibitorsMutational landscapeHuman cancersPoint mutationsProteinMutationsMutational patternsDifferent mutationsActivation statusComputational approachLymphoma kinaseNon-acylated Wnts Can Promote Signaling
Speer KF, Sommer A, Tajer B, Mullins MC, Klein PS, Lemmon MA. Non-acylated Wnts Can Promote Signaling. Cell Reports 2019, 26: 875-883.e5. PMID: 30673610, PMCID: PMC6429962, DOI: 10.1016/j.celrep.2018.12.104.Peer-Reviewed Original Research
2017
EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling Kinetics
Freed DM, Bessman NJ, Kiyatkin A, Salazar-Cavazos E, Byrne PO, Moore JO, Valley CC, Ferguson KM, Leahy DJ, Lidke DS, Lemmon MA. EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling Kinetics. Cell 2017, 171: 683-695.e18. PMID: 28988771, PMCID: PMC5650921, DOI: 10.1016/j.cell.2017.09.017.Peer-Reviewed Original ResearchConceptsReceptor tyrosine kinasesEpidermal growth factor receptorEGFR ligandsEGFR extracellular regionG protein-coupled receptorsDifferent EGFR ligandsCellular programsDifferent activating ligandsEGFR dimersCell signalingGrowth factor receptorExtracellular regionDimeric conformationEGFR dimerizationNew therapeutic opportunitiesReceptor dimersTyrosine kinaseBreast cancer cellsDimerization strengthActivating ligandsFactor receptorCancer cellsEpigenTherapeutic opportunitiesBiased agonismDimerization of Tie2 mediated by its membrane-proximal FNIII domains
Moore JO, Lemmon MA, Ferguson KM. Dimerization of Tie2 mediated by its membrane-proximal FNIII domains. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: 4382-4387. PMID: 28396397, PMCID: PMC5410832, DOI: 10.1073/pnas.1617800114.Peer-Reviewed Original ResearchConceptsExtracellular regionFNIII domainsResolution X-ray crystal structureMembrane-proximal fibronectin type III domainsDomain-mediated interactionsDifferent cellular contextsLigand-binding regionHigher-order oligomersTie2 activationFibronectin type III domainReceptor tyrosine kinasesTyrosine kinase familyEGF-homology domainThird FNIII domainType III domainPrevious structural studiesStructural studiesHomology domainCellular contextKinase familyDimer interfaceDimerization modeReceptor dimerizationTyrosine kinasePrimary activatorMolecular determinants of KA1 domain-mediated autoinhibition and phospholipid activation of MARK1 kinase.
Emptage RP, Lemmon MA, Ferguson KM. Molecular determinants of KA1 domain-mediated autoinhibition and phospholipid activation of MARK1 kinase. Biochemical Journal 2017, 474: 385-398. PMID: 27879374, PMCID: PMC5317272, DOI: 10.1042/bcj20160792.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid MotifsBinding SitesCloning, MolecularEnzyme AssaysEscherichia coliGene ExpressionHumansKineticsMitogen-Activated Protein Kinase 1Models, MolecularPeptidesPhospholipidsProtein BindingProtein Interaction Domains and MotifsProtein Structure, SecondaryRecombinant ProteinsScattering, Small AngleSubstrate SpecificityX-Ray DiffractionConceptsKA1 domainMAP/microtubule affinity-regulating kinasesMicrotubule affinity-regulating kinaseGroup of kinasesIntramolecular autoinhibitory interactionAnionic phospholipid bindingAnionic phospholipidsSite-directed mutagenesisAutoinhibitory interactionsRegulatory modulesAutoinhibitory roleProtein modulesMembrane-bound targetsRelated kinasesBind membranesFamily kinasesKinase domainProtein kinasePhospholipid activationC-terminusRegulatory mechanismsPhospholipid bindingMechanistic basisKinaseAutoinhibitory activity
2016
Overcoming resistance to HER2 inhibitors through state-specific kinase binding
Novotny CJ, Pollari S, Park JH, Lemmon MA, Shen W, Shokat KM. Overcoming resistance to HER2 inhibitors through state-specific kinase binding. Nature Chemical Biology 2016, 12: 923-930. PMID: 27595329, PMCID: PMC5069157, DOI: 10.1038/nchembio.2171.Peer-Reviewed Original ResearchThe Dark Side of Cell Signaling: Positive Roles for Negative Regulators
Lemmon MA, Freed DM, Schlessinger J, Kiyatkin A. The Dark Side of Cell Signaling: Positive Roles for Negative Regulators. Cell 2016, 164: 1172-1184. PMID: 26967284, PMCID: PMC4830124, DOI: 10.1016/j.cell.2016.02.047.Peer-Reviewed Original ResearchConceptsCell signalingNegative regulatorGTP/GDP cycleNew cellular statesKinase/phosphataseCell surface receptorsCellular statesSignal terminationSwitch-like transitionsSuch regulatorsReceptor internalizationGDP cycleReceptor signalingSignal activationKinetic proofreadingSignalingRegulatorOnly negative effectNegative signalsPositive roleImportant roleNegative effectsProofreadingPhosphataseInternalizationThe ALK/ROS1 Inhibitor PF-06463922 Overcomes Primary Resistance to Crizotinib in ALK-Driven Neuroblastoma
Infarinato NR, Park JH, Krytska K, Ryles HT, Sano R, Szigety KM, Li Y, Zou HY, Lee NV, Smeal T, Lemmon MA, Mossé YP. The ALK/ROS1 Inhibitor PF-06463922 Overcomes Primary Resistance to Crizotinib in ALK-Driven Neuroblastoma. Cancer Discovery 2016, 6: 96-107. PMID: 26554404, PMCID: PMC4707106, DOI: 10.1158/2159-8290.cd-15-1056.Peer-Reviewed Original ResearchMeSH KeywordsAminopyridinesAnaplastic Lymphoma KinaseAnimalsCell Line, TumorCrizotinibDrug Resistance, NeoplasmHumansLactamsLactams, MacrocyclicMiceMutationNeuroblastomaPhosphorylationProtein Kinase InhibitorsPyrazolesPyridinesReceptor Protein-Tyrosine KinasesTreatment OutcomeXenograft Model Antitumor AssaysConceptsAnaplastic lymphoma kinaseCrizotinib resistancePF-06463922ALK variantsTreatment of patientsALK inhibitor crizotinibPatient-derived xenograftsXenograft mouse modelPreclinical rationaleClinical obstacleNeuroblastoma modelClinical trialsTumor regressionPrimary resistanceInhibitor crizotinibXenograft tumorsMouse modelXenograft modelLymphoma kinaseNeuroblastomaCrizotinibHigh potencyF1174LVivo dataImproved potency
2015
Comparison of Saccharomyces cerevisiae F-BAR Domain Structures Reveals a Conserved Inositol Phosphate Binding Site
Moravcevic K, Alvarado D, Schmitz KR, Kenniston JA, Mendrola JM, Ferguson KM, Lemmon MA. Comparison of Saccharomyces cerevisiae F-BAR Domain Structures Reveals a Conserved Inositol Phosphate Binding Site. Structure 2015, 23: 352-363. PMID: 25620000, PMCID: PMC4319572, DOI: 10.1016/j.str.2014.12.009.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBinding SitesCrystallography, X-RayGreen Fluorescent ProteinsGTPase-Activating ProteinsHeLa CellsHumansInositol PhosphatesModels, MolecularMolecular Sequence DataProtein Structure, TertiarySaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence AlignmentSpecies SpecificityConceptsF-BAR domainLipid-binding specificityMembrane-binding propertiesNumerous functional studiesPhosphate binding siteUnappreciated determinantF-BARDomain bindsCell signalingCurved membranesMembrane interactionsFunctional studiesRgd1pBinding sitesX-ray crystal structureInositol phosphatesDomain structureDomainHof1pPhospholipidsRhoGAPCytokinesisEndocytosisPhosphoinositideSignaling
2014
ALK Mutations Confer Differential Oncogenic Activation and Sensitivity to ALK Inhibition Therapy in Neuroblastoma
Bresler SC, Weiser DA, Huwe PJ, Park JH, Krytska K, Ryles H, Laudenslager M, Rappaport EF, Wood AC, McGrady PW, Hogarty MD, London WB, Radhakrishnan R, Lemmon MA, Mossé YP. ALK Mutations Confer Differential Oncogenic Activation and Sensitivity to ALK Inhibition Therapy in Neuroblastoma. Cancer Cell 2014, 26: 682-694. PMID: 25517749, PMCID: PMC4269829, DOI: 10.1016/j.ccell.2014.09.019.Peer-Reviewed Original ResearchMeSH KeywordsAnaplastic Lymphoma KinaseAntineoplastic AgentsCrizotinibDisease-Free SurvivalDrug Resistance, NeoplasmHumansHydrogen BondingInfantKaplan-Meier EstimateKineticsModels, MolecularMolecular Targeted TherapyMutation, MissenseNeuroblastomaOncogenesProtein BindingProtein Kinase InhibitorsPyrazolesPyridinesReceptor Protein-Tyrosine KinasesComplex Relationship between Ligand Binding and Dimerization in the Epidermal Growth Factor Receptor
Bessman NJ, Bagchi A, Ferguson KM, Lemmon MA. Complex Relationship between Ligand Binding and Dimerization in the Epidermal Growth Factor Receptor. Cell Reports 2014, 9: 1306-1317. PMID: 25453753, PMCID: PMC4254573, DOI: 10.1016/j.celrep.2014.10.010.Peer-Reviewed Original ResearchConceptsEpidermal growth factor receptorLigand bindingExtracellular regionGrowth factor receptorIntact epidermal growth factor receptorEGFR extracellular regionComplex allosteric regulationExtracellular epidermal growth factor receptorFactor receptorLigand-binding affinityAllosteric regulationReceptor dimerizationEGFR dimerizationAllosteric linkagePathological mutationsOncogenic mutationsNegative cooperativityMutationsDimerizationUnexpected relationshipBindingSpecific ligandsPivotal roleRecent advancesReceptorsPutting together structures of epidermal growth factor receptors
Bessman NJ, Freed DM, Lemmon MA. Putting together structures of epidermal growth factor receptors. Current Opinion In Structural Biology 2014, 29: 95-101. PMID: 25460273, PMCID: PMC4268130, DOI: 10.1016/j.sbi.2014.10.002.Peer-Reviewed Original ResearchConceptsEpidermal growth factor receptorGrowth factor receptorIntact epidermal growth factor receptorChemical biology methodsNumerous crystal structuresFactor receptorTyrosine kinase domainVariety of inhibitorsKinase domainExtracellular regionMembrane environmentIntracellular regionBiology methodsIntact receptorReceptorsCancer therapyNext challengeCrystal structureMembraneActivationRegionInhibitorsDomain