2023
How can I measure brain acetylcholine levels in vivo? Advantages and caveats of commonly used approaches
Mineur Y, Picciotto M. How can I measure brain acetylcholine levels in vivo? Advantages and caveats of commonly used approaches. Journal Of Neurochemistry 2023, 167: 3-15. PMID: 37621094, PMCID: PMC10616967, DOI: 10.1111/jnc.15943.Peer-Reviewed Original Research
2019
The role of acetylcholine in negative encoding bias: Too much of a good thing?
Mineur YS, Picciotto MR. The role of acetylcholine in negative encoding bias: Too much of a good thing? European Journal Of Neuroscience 2019, 53: 114-125. PMID: 31821620, PMCID: PMC7282966, DOI: 10.1111/ejn.14641.Peer-Reviewed Original ResearchConceptsPotential neural pathwaysSymptoms of anxietyAffective processesSustained attentionStressful eventsCore symptomsFacilitate learningAppropriate learningNeural pathwaysRole of acetylcholineGood thingLevels of AChLearningDepressionBiasDepressive episodeNeuromodulatory roleCholinergic signalingAnimal studiesAnxietyMemoryAcetylcholine SignalingHigh levelsEncodingACh
2017
Hippocampal α7 nicotinic ACh receptors contribute to modulation of depression‐like behaviour in C57BL/6J mice
Mineur YS, Mose TN, Blakeman S, Picciotto MR. Hippocampal α7 nicotinic ACh receptors contribute to modulation of depression‐like behaviour in C57BL/6J mice. British Journal Of Pharmacology 2017, 175: 1903-1914. PMID: 28264149, PMCID: PMC5979617, DOI: 10.1111/bph.13769.Peer-Reviewed Original ResearchConceptsDepression-like behaviorNicotinic ACh receptorsFemale miceMale miceCholinergic signalingACh receptorsΑ7 nAChRsSignificant antidepressant-like effectΑ7 nicotinic ACh receptorsEffect of α7Antidepressant-like effectsAgonist GTS-21Depression-related behaviorsC-Fos immunoreactivityACh receptor antagonistDepression-like phenotypeAnxiety-like behaviorNicotinic acetylcholine receptorsAnxiety-like phenotypeHippocampal α7Physostigmine administrationAntagonist methyllycaconitineReceptor antagonistSwim testGTS-21
2015
Multiple Nicotinic Acetylcholine Receptor Subtypes in the Mouse Amygdala Regulate Affective Behaviors and Response to Social Stress
Mineur YS, Fote GM, Blakeman S, Cahuzac EL, Newbold SA, Picciotto MR. Multiple Nicotinic Acetylcholine Receptor Subtypes in the Mouse Amygdala Regulate Affective Behaviors and Response to Social Stress. Neuropsychopharmacology 2015, 41: 1579-1587. PMID: 26471256, PMCID: PMC4832019, DOI: 10.1038/npp.2015.316.Peer-Reviewed Original ResearchConceptsDepression-like behaviorBasolateral amygdalaΑ7 nAChRsCholinergic signalingMultiple nicotinic acetylcholine receptor subtypesNon-selective nAChR antagonist mecamylamineNicotinic acetylcholine receptor activityNicotinic acetylcholine receptor subtypesStress-mediated behaviorsAntidepressant-like effectsAcetylcholine receptor activityC-Fos immunoreactivityNAChR antagonist mecamylamineAcetylcholine receptor subtypesEffects of nicotineMajor depressive disorderSocial defeat stressAnxiety-like behaviorPre-clinical studiesHuman clinical trialsModels of anxietyMouse behavioral modelsHypercholinergic stateAntagonist mecamylamineLocal infusion
2014
Neuromodulation by acetylcholine: examples from schizophrenia and depression
Higley MJ, Picciotto MR. Neuromodulation by acetylcholine: examples from schizophrenia and depression. Current Opinion In Neurobiology 2014, 29: 88-95. PMID: 24983212, PMCID: PMC4268065, DOI: 10.1016/j.conb.2014.06.004.Peer-Reviewed Original Research
2013
Morphine dependence and withdrawal induced changes in cholinergic signaling
Neugebauer NM, Einstein EB, Lopez MB, McClure-Begley TD, Mineur YS, Picciotto MR. Morphine dependence and withdrawal induced changes in cholinergic signaling. Pharmacology Biochemistry And Behavior 2013, 109: 77-83. PMID: 23651795, PMCID: PMC3690589, DOI: 10.1016/j.pbb.2013.04.015.Peer-Reviewed Original ResearchConceptsMedial habenulaMorphine dependenceCholinergic signalingInterpeduncular nucleusHigh-affinity nicotinic acetylcholine receptorsNicotinic acetylcholine receptor levelsEffects of cholinergicMorphine-dependent miceChronic morphine administrationAcetylcholine receptor levelsC-fos expressionC-Fos activationNicotinic acetylcholine receptorsDependent miceMorphine administrationMorphine withdrawalCholinergic drugsOpiate withdrawalCholinergic systemEpibatidine bindingReceptor levelsSomatic signsNeuronal activityAcetylcholine receptorsNAChR receptor
2008
Nicotine-induced plasticity during development: Modulation of the cholinergic system and long-term consequences for circuits involved in attention and sensory processing
Heath CJ, Picciotto MR. Nicotine-induced plasticity during development: Modulation of the cholinergic system and long-term consequences for circuits involved in attention and sensory processing. Neuropharmacology 2008, 56: 254-262. PMID: 18692078, PMCID: PMC2635334, DOI: 10.1016/j.neuropharm.2008.07.020.Peer-Reviewed Original ResearchConceptsDevelopmental nicotine exposureSmoke exposureNicotine exposureEndogenous cholinergic signalingTobacco smoke exposureSensory processingSensory processing deficitsNicotinic acetylcholine receptorsAttention deficit hyperactivity disorderCritical periodDeficit hyperactivity disorderPregnant womenCholinergic systemCholinergic signalingLong-term consequencesEpidemiological studiesAnimal modelsAcetylcholine receptorsSynaptic plasticityNeuropsychiatric conditionsHyperactivity disorderNicotineExposureProcessing deficitsBehavioral processes