Featured Publications
Molecular topography of an entire nervous system
Taylor SR, Santpere G, Weinreb A, Barrett A, Reilly MB, Xu C, Varol E, Oikonomou P, Glenwinkel L, McWhirter R, Poff A, Basavaraju M, Rafi I, Yemini E, Cook SJ, Abrams A, Vidal B, Cros C, Tavazoie S, Sestan N, Hammarlund M, Hobert O, Miller DM. Molecular topography of an entire nervous system. Cell 2021, 184: 4329-4347.e23. PMID: 34237253, PMCID: PMC8710130, DOI: 10.1016/j.cell.2021.06.023.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCaenorhabditis elegansCaenorhabditis elegans ProteinsFluorescent DyesGene Expression Regulation, DevelopmentalGenes, ReporterLarvaNervous SystemNeuronsNeuropeptidesNucleotide MotifsRegulatory Sequences, Nucleic AcidRNA-SeqSignal TransductionTranscription FactorsTranscription, GeneticConceptsGene expressionSpecific gene familiesCis-regulatory elementsNeuron-specific gene expressionIndividual neuron classesSingle-cell resolutionGene expression profilesNeuron classesGene familyAdhesion proteinsNeuropeptide genesExpression profilesExpression dataEntire nervous systemCombinatorial expressionMolecular topographyNervous systemSynaptic specificityNeuropeptide receptorsExpressionPotential roleWiring diagramComputational approachGenesProtein
2024
Organization of a functional glycolytic metabolon on mitochondria for metabolic efficiency
Wang H, Vant J, Zhang A, Sanchez R, Wu Y, Micou M, Luczak V, Whiddon Z, Carlson N, Yu S, Jabbo M, Yoon S, Abushawish A, Ghassemian M, Masubuchi T, Gan Q, Watanabe S, Griffis E, Hammarlund M, Singharoy A, Pekkurnaz G. Organization of a functional glycolytic metabolon on mitochondria for metabolic efficiency. Nature Metabolism 2024, 6: 1712-1735. PMID: 39261628, DOI: 10.1038/s42255-024-01121-9.Peer-Reviewed Original ResearchConceptsO-GlcNAc transferaseO-GlcNAcylation sitesGlycolytic metabolonO-GlcNAcylationEnzyme O-GlcNAc transferaseOuter mitochondrial membraneDynamic O-GlcNAcylationPost-translational modificationsReduced ATP generationMitochondrial ATP productionMetabolic efficiencyEnergy-demanding tissuesCellular energy sourceOGT activityMitochondrial associationRegulatory domainMitochondrial membraneMultiple cell typesATP generationATP productionMitochondrial functionMitochondrial couplingMetabolonCell typesGlucose fluxLocal and dynamic regulation of neuronal glycolysis in vivo
Wolfe A, Koberstein J, Smith C, Stewart M, Gonzalez I, Hammarlund M, Hyman A, Stork P, Goodman R, Colón-Ramos D. Local and dynamic regulation of neuronal glycolysis in vivo. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2314699121. PMID: 38198527, PMCID: PMC10801914, DOI: 10.1073/pnas.2314699121.Peer-Reviewed Original ResearchConceptsGlycolytic stateEnergy stressEnergy metabolismConditions of energy stressDynamic regulationNeuronal functionIndividual cell typesMitochondrial localizationGenetic analysisSubcellular regionsRegulatory enzymeCell-autonomousNeuronal identityGlycolysisCell typesMetabolic stateImaging dynamic changesMetabolismLiving organismsIn vivoCellsEnergy landscapeIndividual neuronsEnzymeDynamic changes
2023
The neuropeptidergic connectome of C. elegans
Ripoll-Sánchez L, Watteyne J, Sun H, Fernandez R, Taylor S, Weinreb A, Bentley B, Hammarlund M, Miller D, Hobert O, Beets I, Vértes P, Schafer W. The neuropeptidergic connectome of C. elegans. Neuron 2023, 111: 3570-3589.e5. PMID: 37935195, PMCID: PMC7615469, DOI: 10.1016/j.neuron.2023.09.043.Peer-Reviewed Original ResearchConceptsNervous systemSynaptic wiring diagramGene expression datasetsReceptor-ligand interactionsStudied neuronsKey network hubNeuronal connectionsSignaling cascadesBrain functionInput connectivityNeuromodulatory signalingChemical synapsesPeptidergic neuromodulationBiochemical analysisEssential roleNeural basisNeuropeptidesConnectomeNetwork hubsWiring diagramSimilar patternStructure-function analysis of ceTIR-1/hSARM1 explains the lack of Wallerian axonal degeneration in C. elegans
Khazma T, Grossman A, Guez-Haddad J, Feng C, Dabas H, Sain R, Weitman M, Zalk R, Isupov M, Hammarlund M, Hons M, Opatowsky Y. Structure-function analysis of ceTIR-1/hSARM1 explains the lack of Wallerian axonal degeneration in C. elegans. Cell Reports 2023, 42: 113026. PMID: 37635352, PMCID: PMC10675840, DOI: 10.1016/j.celrep.2023.113026.Peer-Reviewed Original ResearchConceptsC. elegansCryoelectron microscopy structureNematode C. elegansC. elegans neuronsStructure-function analysisMicroscopy structureNADase activityMolecular mechanismsElegansCellular NADModel animalsSpeciesAxon degenerationWallerian axonal degenerationOrthologsOctamerProteinSARM1DivergenceNADSARMExpressionActivityAxonal degeneration
2016
Axon regeneration in C. elegans: Worming our way to mechanisms of axon regeneration
Byrne AB, Hammarlund M. Axon regeneration in C. elegans: Worming our way to mechanisms of axon regeneration. Experimental Neurology 2016, 287: 300-309. PMID: 27569538, PMCID: PMC5136328, DOI: 10.1016/j.expneurol.2016.08.015.Peer-Reviewed Original ResearchConceptsC. elegansC. elegans researchC. elegans modelSimple nervous systemMammalian nervous systemConserved genomeElegansElegans modelRegeneration responseAxon regenerationCellular mechanismsRegeneration researchTransparent bodyNervous systemRegenerationGenomeFundamental questionsSpeciesMechanismTechnical advancesRegeneration studiesPotential future directions
2015
RNA ligation in neurons by RtcB inhibits axon regeneration
Kosmaczewski SG, Han SM, Han B, Meyer B, Baig HS, Athar W, Lin-Moore AT, Koelle MR, Hammarlund M. RNA ligation in neurons by RtcB inhibits axon regeneration. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: 8451-8456. PMID: 26100902, PMCID: PMC4500288, DOI: 10.1073/pnas.1502948112.Peer-Reviewed Original Research
2014
Axon regeneration in C. elegans
Hammarlund M, Jin Y. Axon regeneration in C. elegans. Current Opinion In Neurobiology 2014, 27: 199-207. PMID: 24794753, PMCID: PMC4122601, DOI: 10.1016/j.conb.2014.04.001.Peer-Reviewed Original ResearchBidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons
Luo L, Cook N, Venkatachalam V, Martinez-Velazquez LA, Zhang X, Calvo AC, Hawk J, MacInnis BL, Frank M, Ng JH, Klein M, Gershow M, Hammarlund M, Goodman MB, Colón-Ramos DA, Zhang Y, Samuel AD. Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 2776-2781. PMID: 24550307, PMCID: PMC3932917, DOI: 10.1073/pnas.1315205111.Peer-Reviewed Original Research
2012
Neural Regeneration in Caenorhabditis elegans
Bejjani R, Hammarlund M. Neural Regeneration in Caenorhabditis elegans. Annual Review Of Genetics 2012, 46: 499-513. PMID: 22974301, PMCID: PMC3700416, DOI: 10.1146/annurev-genet-110711-155550.Peer-Reviewed Original ResearchNotch Signaling Inhibits Axon Regeneration
Bejjani R, Hammarlund M. Notch Signaling Inhibits Axon Regeneration. Neuron 2012, 73: 268-278. PMID: 22284182, PMCID: PMC3690129, DOI: 10.1016/j.neuron.2011.11.017.Peer-Reviewed Original Research
2011
In vivo Laser Axotomy in C. elegans
Byrne AB, Edwards TJ, Hammarlund M. In vivo Laser Axotomy in C. elegans. Journal Of Visualized Experiments 2011, 2707. PMID: 21633331, PMCID: PMC3168200, DOI: 10.3791/2707.Peer-Reviewed Original Research