2023
Molecular Lithography on Silicon Wafers Guided by Porous, Extended Arrays of Small DNA Tiles
Mao D, Liu L, Zhang C, Liu H, Mao C. Molecular Lithography on Silicon Wafers Guided by Porous, Extended Arrays of Small DNA Tiles. Langmuir 2023, 39: 11782-11787. PMID: 37562139, DOI: 10.1021/acs.langmuir.3c01422.Peer-Reviewed Original ResearchConceptsE-beam lithographyDNA nanostructuresCost-effective fabrication methodSilicon wafersDNA origami structuresTile-based DNAMolecular lithographyCorresponding nanostructuresFabrication methodSmall DNA tilesNanostructuresFeature sizeLithographyOrigami structuresHF etchingDNA tilesWafersExtended arrayArrayLarge areasEtchingHereinSerial methodTemplateSizeSurface-assisted self-assembly of 2D, DNA binary crystals
Liu L, Mao D, Li Z, Zheng M, He K, Mao C. Surface-assisted self-assembly of 2D, DNA binary crystals. Nanoscale 2023, 15: 9941-9945. PMID: 37249191, DOI: 10.1039/d3nr01187a.Peer-Reviewed Original ResearchConceptsSolid surfaceTwo-dimensional nanoarraysDifferent adsorption strengthsComparable molecular weightAdsorption strengthDifferent tilesDifferential adsorptionComplicated nanostructuresMolar ratioMolecular weightBinary crystalsPowerful methodStructural complexityNanoarraysAdsorptionNanostructuresSurfaceEffective molar ratioHereinTile concentrations
2022
Functionalized DNA-Origami-Protein Nanopores Generate Large Transmembrane Channels with Programmable Size-Selectivity
Shen Q, Xiong Q, Zhou K, Feng Q, Liu L, Tian T, Wu C, Xiong Y, Melia T, Lusk C, Lin C. Functionalized DNA-Origami-Protein Nanopores Generate Large Transmembrane Channels with Programmable Size-Selectivity. Journal Of The American Chemical Society 2022, 145: 1292-1300. PMID: 36577119, PMCID: PMC9852090, DOI: 10.1021/jacs.2c11226.Peer-Reviewed Original ResearchConceptsExchange of macromoleculesCholesterol-rich membranesHybrid nanoporesSynthetic biologyBiophysical toolsSynthetic cellsTransmembrane channelsTransmembrane nanoporesDNA ringsProtein nanoporeCell membraneBacterial toxinsDNA origami techniqueLipid membranesAnalytical chemistryMacromolecule sizeDNA origamiMembraneProgrammable sizeNanoporesSized poresNucleoporinsAverage inner diameterCellsPneumolysinActuating tension-loaded DNA clamps drives membrane tubulation
Liu L, Xiong Q, Xie C, Pincet F, Lin C. Actuating tension-loaded DNA clamps drives membrane tubulation. Science Advances 2022, 8: eadd1830. PMID: 36223466, PMCID: PMC9555772, DOI: 10.1126/sciadv.add1830.Peer-Reviewed Original ResearchConceptsDNA clampMembrane tubulationMembrane dynamicsMembrane-remodeling eventsVesicle tubulationConformational changesSpatiotemporal controlDNA signalsCell membraneDNA nanostructuresTubulationMembrane deformationClosed stateOpen stateSelf-assembled DNA nanostructuresOrganismsProteinMembrane tubeArtificial systemsTube widthMembraneDynamics
2021
Kinetic DNA Self-Assembly: Simultaneously Co-folding Complementary DNA Strands into Identical Nanostructures
Zheng M, Li Z, Liu L, Li M, Paluzzi V, Choi J, Mao C. Kinetic DNA Self-Assembly: Simultaneously Co-folding Complementary DNA Strands into Identical Nanostructures. Journal Of The American Chemical Society 2021, 143: 20363-20367. PMID: 34808053, DOI: 10.1021/jacs.1c09925.Peer-Reviewed Original ResearchConceptsDNA nanostructuresAtomic force microscopy imagingLimited production yieldForce microscopy imagingLong DNA strandsComplementary DNA strandsDNA strandsDNA origamiEnzymatic reactionsIdentical nanostructuresNanostructuresLarge-scale productionDNA duplexConvenient methodInteraction kineticsMicroscopy imagingDuplex DNAComplementary strandSame solution5′-Phosphorylation Strengthens Sticky-End Cohesions
Li Z, Zheng M, Liu L, Seeman N, Mao C. 5′-Phosphorylation Strengthens Sticky-End Cohesions. Journal Of The American Chemical Society 2021, 143: 14987-14991. PMID: 34516099, DOI: 10.1021/jacs.1c07279.Peer-Reviewed Original ResearchSticky-ended cohesionDNA crystalsSelf-assembly kineticsFree energy calculationsNucleic acid nanotechnologyMolecular mechanicsChemical modificationNatural DNACrystal morphologyEnergy calculationsCrystal growthSynthetic DNACrystallization processCrystallization kineticsCrystalsKineticsPotential differenceNanotechnologyHereinMorphologyCalculationsSorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation
Yang Y, Wu Z, Wang L, Zhou K, Xia K, Xiong Q, Liu L, Zhang Z, Chapman ER, Xiong Y, Melia TJ, Karatekin E, Gu H, Lin C. Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation. Nature Chemistry 2021, 13: 335-342. PMID: 33785892, PMCID: PMC8049973, DOI: 10.1038/s41557-021-00667-5.Peer-Reviewed Original ResearchDNA origami
Dey S, Fan C, Gothelf K, Li J, Lin C, Liu L, Liu N, Nijenhuis M, Saccà B, Simmel F, Yan H, Zhan P. DNA origami. Nature Reviews Methods Primers 2021, 1: 13. DOI: 10.1038/s43586-020-00009-8.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsDNA origami technologyOrigami technologyDNA origami techniqueNear-atomic precisionDNA nanotechnologyOrigami techniqueDNA origamiDrug deliveryOrigami structuresMolecular machinesOrigami designBiological materialsLiving cellsSynthesisVivo synthesisNanophotonicsNanotechnologyNanofabricationNanostructuresNanoelectronicsBioimagingScale of productionFabricationTechnologyFunctionalization
2020
A poly(thymine)–melamine duplex for the assembly of DNA nanomaterials
Li Q, Zhao J, Liu L, Jonchhe S, Rizzuto F, Mandal S, He H, Wei S, Sleiman H, Mao H, Mao C. A poly(thymine)–melamine duplex for the assembly of DNA nanomaterials. Nature Materials 2020, 19: 1012-1018. PMID: 32661383, PMCID: PMC7732259, DOI: 10.1038/s41563-020-0728-2.Peer-Reviewed Original ResearchConceptsHydrogen-bonding motifsPresence of melamineHydrogen bonding faceX-ray crystallographyAdenine-thymine base pairsDNA base pairingDNA duplex structureDNA nanomaterialsHydrogen bondsDNA nanotechnologyRight-handed duplexSensitive detectionHelical columnsSmall moleculesMelamineStrand displacementBase pairingMechanical strengthDuplexDuplex structureThymine residuesPolymersNanomaterialsCrystallographyBondsAssembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands
He K, Li Z, Liu L, Zheng M, Mao C. Assembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands. ChemBioChem 2020, 21: 2132-2136. PMID: 32196869, DOI: 10.1002/cbic.202000106.Peer-Reviewed Original ResearchDNA Origami Post‐Processing by CRISPR‐Cas12a
Xiong Q, Xie C, Zhang Z, Liu L, Powell J, Shen Q, Lin C. DNA Origami Post‐Processing by CRISPR‐Cas12a. Angewandte Chemie 2020, 132: 3984-3988. DOI: 10.1002/ange.201915555.Peer-Reviewed Original ResearchDNA origami structuresCRISPR-Cas12aDNA origami devicesDNA origami designDNA origami techniqueNanomaterial fabricationFunctional nanodevicesDNA origamiScaffold strandTremendous promiseCutting-edge toolsVersatile toolNanodevicesNanostructuresFacileFabricationBiocompatibilityBiotechnologySequence specificityOrigamiEnzymatic methodMechanical propertiesStructural transformationDevicesIntricate structureDNA Origami Post‐Processing by CRISPR‐Cas12a
Xiong Q, Xie C, Zhang Z, Liu L, Powell JT, Shen Q, Lin C. DNA Origami Post‐Processing by CRISPR‐Cas12a. Angewandte Chemie International Edition 2020, 59: 3956-3960. PMID: 31883145, PMCID: PMC7101258, DOI: 10.1002/anie.201915555.Peer-Reviewed Original ResearchConceptsDNA origami structuresCRISPR-Cas12aDNA origami devicesDNA origami designDNA origami techniqueNanomaterial fabricationFunctional nanodevicesDNA origamiScaffold strandTremendous promiseCutting-edge toolsVersatile toolNanodevicesNanostructuresFacileFabricationBiocompatibilityBiotechnologySequence specificityOrigamiEnzymatic methodMechanical propertiesStructural transformationDevicesIntricate structure
2019
ATP-Triggered, Allosteric Self-Assembly of DNA Nanostructures
Li Q, Liu L, Mao D, Yu Y, Li W, Zhao X, Mao C. ATP-Triggered, Allosteric Self-Assembly of DNA Nanostructures. Journal Of The American Chemical Society 2019, 142: 665-668. PMID: 31877040, DOI: 10.1021/jacs.9b10272.Peer-Reviewed Original ResearchConceptsDNA nanostructuresVersatile molecular platformAptamer-ligand bindingResponsive assembliesSelf-AssemblyResponsive DNADrug deliveryResponsive behaviorATP aptamerMolecular machinesMolecular platformNanostructuresBiological systemsAllosteric mechanismBiosensingAssemblyAptamerGreat challengeConformationHereinMaking Engineered 3D DNA Crystals Robust
Li Z, Liu L, Zheng M, Zhao J, Seeman N, Mao C. Making Engineered 3D DNA Crystals Robust. Journal Of The American Chemical Society 2019, 141: 15850-15855. PMID: 31553173, DOI: 10.1021/jacs.9b06613.Peer-Reviewed Original ResearchConceptsDNA crystalsDNA nanotechnologyMacroscopic devicesCovalent bondsProtein entrapmentSticky endsCrystal stabilityCrystal shellsCrystal contactsNew opportunitiesComplex architectureCrystalsMolecular levelNanotechnologyFabricationBiocatalysisApplicationsKey obstacleBondsDevicesScaffoldsShellArchitectureMatryoshka dollsStabilityRational Design and Self-Assembly of Two-Dimensional, Dodecagonal DNA Quasicrystals
Liu L, Li Z, Li Y, Mao C. Rational Design and Self-Assembly of Two-Dimensional, Dodecagonal DNA Quasicrystals. Journal Of The American Chemical Society 2019, 141: 4248-4251. PMID: 30827097, DOI: 10.1021/jacs.9b00843.Peer-Reviewed Original ResearchPatterning Nanoparticles with DNA Molds
Liu L, Zheng M, Li Z, Li Q, Mao C. Patterning Nanoparticles with DNA Molds. ACS Applied Materials & Interfaces 2019, 11: 13853-13858. PMID: 30793605, DOI: 10.1021/acsami.8b22691.Peer-Reviewed Original ResearchConceptsSelf-assembled DNA nanostructuresAtomic force microscopyGold nanoparticlesNonspecific adsorptionDNA nanostructuresPatterned nanoparticlesForce microscopyNanoparticlesAccessible cavitiesSpecific recognitionStructural templateNanostructuresHexagonal arrayTemplateAdsorptionGeneral methodSubstrateDNA arraysHereinDNA templateFourier transform analysisMicroscopyArrayDirect interactionLarge array
2017
Cover Feature: Regulating DNA Self‐assembly by DNA–Surface Interactions (ChemBioChem 24/2017)
Liu L, Li Y, Wang Y, Zheng J, Mao C. Cover Feature: Regulating DNA Self‐assembly by DNA–Surface Interactions (ChemBioChem 24/2017). ChemBioChem 2017, 18: 2367-2367. DOI: 10.1002/cbic.201700618.Peer-Reviewed Original ResearchRegulating DNA Self‐assembly by DNA–Surface Interactions
Liu L, Li Y, Wang Y, Zheng J, Mao C. Regulating DNA Self‐assembly by DNA–Surface Interactions. ChemBioChem 2017, 18: 2404-2407. PMID: 29024338, DOI: 10.1002/cbic.201700545.Peer-Reviewed Original Research
2015
Enzyme-Controlled Intracellular Self-Assembly of18F Nanoparticles for Enhanced MicroPET Imaging of Tumor
Liu Y, Miao Q, Zou P, Liu L, Wang X, An L, Zhang X, Qian X, Luo S, Liang G. Enzyme-Controlled Intracellular Self-Assembly of18F Nanoparticles for Enhanced MicroPET Imaging of Tumor. Theranostics 2015, 5: 1058-1067. PMID: 26199645, PMCID: PMC4508496, DOI: 10.7150/thno.11758.Peer-Reviewed Original Research
2013
Quantum Dots as Multifunctional Materials for Tumor Imaging and Therapy
Liu L, Miao Q, Liang G. Quantum Dots as Multifunctional Materials for Tumor Imaging and Therapy. Materials 2013, 6: 483-499. PMID: 28809320, PMCID: PMC5452096, DOI: 10.3390/ma6020483.Peer-Reviewed Original Research