2016
Engineered Tissue–Stent Biocomposites as Tracheal Replacements
Zhao L, Sundaram S, Le AV, Huang AH, Zhang J, Hatachi G, Beloiartsev A, Caty MG, Yi T, Leiby K, Gard A, Kural MH, Gui L, Rocco KA, Sivarapatna A, Calle E, Greaney A, Urbani L, Maghsoudlou P, Burns A, DeCoppi P, Niklason LE. Engineered Tissue–Stent Biocomposites as Tracheal Replacements. Tissue Engineering Part A 2016, 22: 1086-1097. PMID: 27520928, PMCID: PMC5312617, DOI: 10.1089/ten.tea.2016.0132.Peer-Reviewed Original ResearchComparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicine
Balestrini JL, Gard AL, Gerhold KA, Wilcox EC, Liu A, Schwan J, Le AV, Baevova P, Dimitrievska S, Zhao L, Sundaram S, Sun H, Rittié L, Dyal R, Broekelmann TJ, Mecham RP, Schwartz MA, Niklason LE, White ES. Comparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicine. Biomaterials 2016, 102: 220-230. PMID: 27344365, PMCID: PMC4939101, DOI: 10.1016/j.biomaterials.2016.06.025.Peer-Reviewed Original ResearchConceptsHuman endothelial cellsCell-matrix interactionsLung regenerationEndothelial cellsKey matrix proteinsComparative biologyCell adhesion moleculeMatrix proteinsLung extracellular matrixCell healthExtracellular matrixResidual DNASpecies mismatchRat lung scaffoldsRegenerative medicineAdhesion moleculesLung scaffoldsPrimate tissuesCellsVascular cell adhesion moleculeLung engineeringLung matrixLess expressionPulmonary cellsProfound effectImplantable tissue-engineered blood vessels from human induced pluripotent stem cells
Gui L, Dash BC, Luo J, Qin L, Zhao L, Yamamoto K, Hashimoto T, Wu H, Dardik A, Tellides G, Niklason LE, Qyang Y. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 2016, 102: 120-129. PMID: 27336184, PMCID: PMC4939127, DOI: 10.1016/j.biomaterials.2016.06.010.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cellsVascular diseaseBlood vesselsAlpha-smooth muscle actinSmooth muscle myosin heavy chainActive vascular remodelingSmooth muscle cellsMuscle myosin heavy chainTissue-engineered blood vesselsStem cellsAbundant collagenous matrixPluripotent stem cellsInterposition graftAllogeneic graftsVascular remodelingΑ-SMANude ratsMuscle actinMyosin heavy chainClinical useMuscle cellsFunctional vascular smooth muscle cellsPatientsFunctional tissue-engineered blood vesselGraftSterilization of Lung Matrices by Supercritical Carbon Dioxide
Balestrini JL, Liu A, Gard AL, Huie J, Blatt KM, Schwan J, Zhao L, Broekelmann TJ, Mecham RP, Wilcox EC, Niklason LE. Sterilization of Lung Matrices by Supercritical Carbon Dioxide. Tissue Engineering Part C Methods 2016, 22: 260-269. PMID: 26697757, PMCID: PMC4782026, DOI: 10.1089/ten.tec.2015.0449.Peer-Reviewed Original ResearchConceptsLung matrixEnd-stage pulmonary failureExtracellular matrix depletionMajority of lungSupercritical carbon dioxidePulmonary failureLung tissueAcellular lungsCell engraftmentLungCurrent study resultsLung engineeringMatrix depletionTissueMechanical integrityCarbon dioxideScCO2 treatmentMechanical featuresDecellularized scaffoldTissue architectureSterile bufferSterility assurance levelDecellularized tissuesRegenerative medicine purposes
2014
The Use of Optical Clearing and Multiphoton Microscopy for Investigation of Three-Dimensional Tissue-Engineered Constructs
Calle EA, Vesuna S, Dimitrievska S, Zhou K, Huang A, Zhao L, Niklason LE, Levene MJ. The Use of Optical Clearing and Multiphoton Microscopy for Investigation of Three-Dimensional Tissue-Engineered Constructs. Tissue Engineering Part C Methods 2014, 20: 570-577. PMID: 24251630, PMCID: PMC4074743, DOI: 10.1089/ten.tec.2013.0538.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Line, TumorExtracellular MatrixHumansLungMicroscopy, Fluorescence, MultiphotonRatsTissue EngineeringTissue ScaffoldsConceptsTissue-engineered blood vesselsThree-dimensional tissue engineeringThree-dimensional tissuesTissue engineeringEngineered ConstructsMicron scaleExtracellular matrix scaffoldsIntact volumesNondestructive imagingMatrix scaffoldsSimple separationVirtual volumeNew methodMicroscopyVessel integrityIsotropic resolutionDigital volumeIndividual collagen fibersSingle planeNondestructive measuresEngineeringStackMethodRegistration algorithmStack of images
2013
Fibroblast engraftment in the decellularized mouse lung occurs via a β1-integrin-dependent, FAK-dependent pathway that is mediated by ERK and opposed by AKT
Sun H, Calle E, Chen X, Mathur A, Zhu Y, Mendez J, Zhao L, Niklason L, Peng X, Peng H, Herzog EL. Fibroblast engraftment in the decellularized mouse lung occurs via a β1-integrin-dependent, FAK-dependent pathway that is mediated by ERK and opposed by AKT. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2013, 306: l463-l475. PMID: 24337923, PMCID: PMC3949086, DOI: 10.1152/ajplung.00100.2013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, NeutralizingBioartificial OrgansCell AdhesionCell LineCell ProliferationCell SurvivalExtracellular Signal-Regulated MAP KinasesFibroblastsFocal Adhesion Kinase 1Integrin beta1LungMicePhosphorylationProto-Oncogene Proteins c-aktRatsRho-Associated KinasesTissue EngineeringTissue ScaffoldsConceptsExtracellular signal-regulated kinase (ERK) inhibitorSignal-regulated kinase inhibitorKinase inhibitorsERK-dependent mannerFAK-dependent pathwayFocal adhesion kinase (FAK) inhibitorFibroblast cell lineMouse fibroblast cell lineTissue-engineered lungsMinimal cell deathCell survivalCell deathMouse lungAkt inhibitorMouse fibroblastsProteinaceous componentsMammalian lungCell proliferationCell linesNumber of mechanismsAktTime-dependent increaseLung scaffoldsCell numberCell density
2011
Development of Novel Biodegradable Polymer Scaffolds for Vascular Tissue Engineering
Gui L, Zhao L, Spencer RW, Burghouwt A, Taylor MS, Shalaby SW, Niklason LE. Development of Novel Biodegradable Polymer Scaffolds for Vascular Tissue Engineering. Tissue Engineering Part A 2011, 17: 1191-1200. PMID: 21143045, PMCID: PMC3079248, DOI: 10.1089/ten.tea.2010.0508.Peer-Reviewed Original ResearchMeSH KeywordsAbsorbable ImplantsAnimalsBlood Vessel ProsthesisMaterials TestingPolymersSwineTissue EngineeringTissue ScaffoldsConceptsTissue engineering approachesTissue-engineered blood vesselsBiodegradable polymer scaffoldsVascular tissue engineeringPolyglycolic acidDegradation profileTissue mechanicsEngineering approachVessel mechanicsPolymers IIIPolymer scaffoldsBiodegradable scaffoldsTissue engineeringPolymeric materialsDegradation characteristicsMatrix-rich tissuesSynthetic polymersPolymer IPolymer IIPolymer fragmentsAqueous conditionsPolymersPotential applicationsSimilar degradation profilesMechanics
2010
Tissue-Engineered Lungs for in Vivo Implantation
Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE. Tissue-Engineered Lungs for in Vivo Implantation. Science 2010, 329: 538-541. PMID: 20576850, PMCID: PMC3640463, DOI: 10.1126/science.1189345.Peer-Reviewed Original ResearchConceptsLung tissueLung matrixAcellular lung matrixNative lung tissueTissue-engineered lungsLung transplantationPrimary therapyAdult lung tissueAdult ratsPulmonary epitheliumVascular endotheliumFunctional lungLung regenerationVascular compartmentLungSeeded endothelial cellsMechanical characteristicsEndothelial cellsVivo implantationRatsEpitheliumTissueCellular componentsExtracellular matrixGas exchange