2016
Engineered Tissue–Stent Biocomposites as Tracheal Replacements
Zhao L, Sundaram S, Le AV, Huang AH, Zhang J, Hatachi G, Beloiartsev A, Caty MG, Yi T, Leiby K, Gard A, Kural MH, Gui L, Rocco KA, Sivarapatna A, Calle E, Greaney A, Urbani L, Maghsoudlou P, Burns A, DeCoppi P, Niklason LE. Engineered Tissue–Stent Biocomposites as Tracheal Replacements. Tissue Engineering Part A 2016, 22: 1086-1097. PMID: 27520928, PMCID: PMC5312617, DOI: 10.1089/ten.tea.2016.0132.Peer-Reviewed Original ResearchComparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicine
Balestrini JL, Gard AL, Gerhold KA, Wilcox EC, Liu A, Schwan J, Le AV, Baevova P, Dimitrievska S, Zhao L, Sundaram S, Sun H, Rittié L, Dyal R, Broekelmann TJ, Mecham RP, Schwartz MA, Niklason LE, White ES. Comparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicine. Biomaterials 2016, 102: 220-230. PMID: 27344365, PMCID: PMC4939101, DOI: 10.1016/j.biomaterials.2016.06.025.Peer-Reviewed Original ResearchConceptsHuman endothelial cellsCell-matrix interactionsLung regenerationEndothelial cellsKey matrix proteinsComparative biologyCell adhesion moleculeMatrix proteinsLung extracellular matrixCell healthExtracellular matrixResidual DNASpecies mismatchRat lung scaffoldsRegenerative medicineAdhesion moleculesLung scaffoldsPrimate tissuesCellsVascular cell adhesion moleculeLung engineeringLung matrixLess expressionPulmonary cellsProfound effect
2014
The Use of Optical Clearing and Multiphoton Microscopy for Investigation of Three-Dimensional Tissue-Engineered Constructs
Calle EA, Vesuna S, Dimitrievska S, Zhou K, Huang A, Zhao L, Niklason LE, Levene MJ. The Use of Optical Clearing and Multiphoton Microscopy for Investigation of Three-Dimensional Tissue-Engineered Constructs. Tissue Engineering Part C Methods 2014, 20: 570-577. PMID: 24251630, PMCID: PMC4074743, DOI: 10.1089/ten.tec.2013.0538.Peer-Reviewed Original ResearchConceptsTissue-engineered blood vesselsThree-dimensional tissue engineeringThree-dimensional tissuesTissue engineeringEngineered ConstructsMicron scaleExtracellular matrix scaffoldsIntact volumesNondestructive imagingMatrix scaffoldsSimple separationVirtual volumeNew methodMicroscopyVessel integrityIsotropic resolutionDigital volumeIndividual collagen fibersSingle planeNondestructive measuresEngineeringStackMethodRegistration algorithmStack of images
2013
Fibroblast engraftment in the decellularized mouse lung occurs via a β1-integrin-dependent, FAK-dependent pathway that is mediated by ERK and opposed by AKT
Sun H, Calle E, Chen X, Mathur A, Zhu Y, Mendez J, Zhao L, Niklason L, Peng X, Peng H, Herzog EL. Fibroblast engraftment in the decellularized mouse lung occurs via a β1-integrin-dependent, FAK-dependent pathway that is mediated by ERK and opposed by AKT. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2013, 306: l463-l475. PMID: 24337923, PMCID: PMC3949086, DOI: 10.1152/ajplung.00100.2013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, NeutralizingBioartificial OrgansCell AdhesionCell LineCell ProliferationCell SurvivalExtracellular Signal-Regulated MAP KinasesFibroblastsFocal Adhesion Kinase 1Integrin beta1LungMicePhosphorylationProto-Oncogene Proteins c-aktRatsRho-Associated KinasesTissue EngineeringTissue ScaffoldsConceptsExtracellular signal-regulated kinase (ERK) inhibitorSignal-regulated kinase inhibitorKinase inhibitorsERK-dependent mannerFAK-dependent pathwayFocal adhesion kinase (FAK) inhibitorFibroblast cell lineMouse fibroblast cell lineTissue-engineered lungsMinimal cell deathCell survivalCell deathMouse lungAkt inhibitorMouse fibroblastsProteinaceous componentsMammalian lungCell proliferationCell linesNumber of mechanismsAktTime-dependent increaseLung scaffoldsCell numberCell density
2010
Tissue-Engineered Lungs for in Vivo Implantation
Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE. Tissue-Engineered Lungs for in Vivo Implantation. Science 2010, 329: 538-541. PMID: 20576850, PMCID: PMC3640463, DOI: 10.1126/science.1189345.Peer-Reviewed Original ResearchConceptsLung tissueLung matrixAcellular lung matrixNative lung tissueTissue-engineered lungsLung transplantationPrimary therapyAdult lung tissueAdult ratsPulmonary epitheliumVascular endotheliumFunctional lungLung regenerationVascular compartmentLungSeeded endothelial cellsMechanical characteristicsEndothelial cellsVivo implantationRatsEpitheliumTissueCellular componentsExtracellular matrixGas exchangeUtility of Telomerase-pot1 Fusion Protein in Vascular Tissue Engineering
Petersen TH, Hitchcock T, Muto A, Calle EA, Zhao L, Gong Z, Gui L, Dardik A, Bowles DE, Counter CM, Niklason LE. Utility of Telomerase-pot1 Fusion Protein in Vascular Tissue Engineering. Cell Transplantation 2010, 19: 79-87. PMID: 19878625, PMCID: PMC2850951, DOI: 10.3727/096368909x478650.Peer-Reviewed Original ResearchMeSH KeywordsAdenoviridaeAdultAnimalsBioreactorsBlood VesselsCell Culture TechniquesCells, CulturedCellular SenescenceCollagenGenetic VectorsGraft SurvivalHumansMaleMuscle, Smooth, VascularRatsRats, NudeRecombinant Fusion ProteinsShelterin ComplexTelomeraseTelomere-Binding ProteinsTissue EngineeringTransfectionConceptsTransient deliveryVascular tissue engineeringRegenerative medicineTissue engineeringRegenerative medicine applicationsTissue-engineered constructsLentiviral vectorsMedicine applicationsImportant stumbling blockTelomeric repeat amplification protocolElderly human donorsBetter performanceAmplification protocolEngineeringDeliveryTransient reconstitutionDifferentiated cellsAdenoviral deliveryRepeat amplification protocolFusion proteinTransgeneHuman smooth muscle cellsStumbling blockGreater collagen contentProtocol