2015
Electrical Signaling in Neurons
Levitan I, Kaczmarek L. Electrical Signaling in Neurons. 2015, 41-62. DOI: 10.1093/med/9780199773893.003.0003.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMembrane Ion Channels and Ion Currents
Levitan I, Kaczmarek L. Membrane Ion Channels and Ion Currents. 2015, 63-84. DOI: 10.1093/med/9780199773893.003.0004.ChaptersSingle ion channelsIon currentMovement of ionsIon channelsParticular ionPlasma membraneSpecialized membrane proteinsMembrane ion channelsIonsAction potential firingNeuronal plasma membranePatch-clamp techniqueMembrane proteinsNeurons resultsCurrentClamp techniqueAction potentialsDetailed characterizationElectrical activityMembrane currentsMembrane voltageChannelsMacroscopic membrane currentsEssential propertiesComplex patternsFormation, Maintenance, and Plasticity of Chemical Synapses
Levitan I, Kaczmarek L. Formation, Maintenance, and Plasticity of Chemical Synapses. 2015, 415-456. DOI: 10.1093/med/9780199773893.003.0017.ChaptersAppropriate postsynaptic targetsPostsynaptic action potentialsImmediate early gene FosPostsynaptic receptorsPostsynaptic targetsNMDA receptorsExcitatory neuronsExcitatory synapsesPostsynaptic sitesPresynaptic terminalsPostsynaptic partnersAction potentialsNeuromuscular junctionSynapse formationCertain synapsesChemical synapsesAdult animalsElectrical activitySynapsesReceptorsBiochemical changesMental retardation proteinEph receptorsCoordinated activitySuch reorganization
2006
Opposite Regulation of Slick and Slack K+ Channels by Neuromodulators
Santi CM, Ferreira G, Yang B, Gazula VR, Butler A, Wei A, Kaczmarek LK, Salkoff L. Opposite Regulation of Slick and Slack K+ Channels by Neuromodulators. Journal Of Neuroscience 2006, 26: 5059-5068. PMID: 16687497, PMCID: PMC6674240, DOI: 10.1523/jneurosci.3372-05.2006.Peer-Reviewed Original ResearchConceptsSlo2 channelsHippocampal brain sectionsCultured hippocampal neuronsProtein kinase CWhole-cell currentsPKC activator PMANeuronal excitabilityHippocampal neuronsBrain sectionsBasal levelsImmunocytochemical techniquesGalphaq proteinElectrical activitySlo2.1Activator PMAReceptorsChannel gene familyWidespread expressionChannel activityExcitabilityNeuromodulatorsIntracellular concentrationPotential of cellsBrainXenopus oocytes
2003
Slick (Slo2.1), a Rapidly-Gating Sodium-Activated Potassium Channel Inhibited by ATP
Bhattacharjee A, Joiner WJ, Wu M, Yang Y, Sigworth FJ, Kaczmarek LK. Slick (Slo2.1), a Rapidly-Gating Sodium-Activated Potassium Channel Inhibited by ATP. Journal Of Neuroscience 2003, 23: 11681-11691. PMID: 14684870, PMCID: PMC6740956, DOI: 10.1523/jneurosci.23-37-11681.2003.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acid SequenceAnimalsCells, CulturedChloridesCHO CellsCloning, MolecularCricetinaeElectric ConductivityHumansIon Channel GatingKineticsMolecular Sequence DataPotassium ChannelsPotassium Channels, Sodium-ActivatedRatsSequence AlignmentSodiumTissue DistributionXenopus
2001
Title Pages
B.Levitan I, Kaczmarek L. Title Pages. 2001, i-iv. DOI: 10.1093/oso/9780195145236.002.0001.Peer-Reviewed Original ResearchElectrical activityAppropriate synaptic connectionsAction of neurotransmittersBiochemical pathwaysMolecular mechanismsMolecular biologyUndifferentiated cellsIon channelsCellular propertiesSynaptic connectionsNerve cellsNeuronsSensory cellsSynaptic junctionsMolecular factorsSingle neuronsFirst courseCellsGenomeBiologyVaried patternsNeurotransmittersHormoneSecretionActivityPreface
B.Levitan I, Kaczmarek L. Preface. 2001, vii-viii. DOI: 10.1093/oso/9780195145236.002.0003.Peer-Reviewed Original ResearchElectrical activityBiochemical pathwaysMolecular mechanismsAppropriate synaptic connectionsMolecular biologyUndifferentiated cellsAction of neurotransmittersIon channelsCellular propertiesSensory cellsMolecular factorsSynaptic connectionsNerve cellsNeuronsSynaptic junctionsSingle neuronsCellsFirst courseGenomeBiologyPathwayActivityMechanismVaried patternsAccount of mechanismsPreface to the Second Edition
B.Levitan I, Kaczmarek L. Preface to the Second Edition. 2001, ix-x. DOI: 10.1093/oso/9780195145236.002.0004.Peer-Reviewed Original ResearchElectrical activityAppropriate synaptic connectionsBiochemical pathwaysAction of neurotransmittersMolecular mechanismsMolecular biologyUndifferentiated cellsIon channelsCellular propertiesSensory cellsMolecular factorsSynaptic connectionsNerve cellsNeuronsSynaptic junctionsSingle neuronsCellsFirst courseGenomeBiologyPathwayVaried patternsActivityMechanismNeurotransmittersPreface to the First Edition
B.Levitan I, Kaczmarek L. Preface to the First Edition. 2001, xi-xii. DOI: 10.1093/oso/9780195145236.002.0005.Peer-Reviewed Original ResearchElectrical activityBiochemical pathwaysMolecular mechanismsAppropriate synaptic connectionsAction of neurotransmittersMolecular biologyUndifferentiated cellsIon channelsCellular propertiesSensory cellsMolecular factorsSynaptic connectionsNerve cellsNeuronsSynaptic junctionsSingle neuronsCellsFirst courseGenomeBiologyPathwayActivityMechanismVaried patternsNeurotransmittersDiversity in the Structure and Function of Ion Channels
B.Levitan I, Kaczmarek L. Diversity in the Structure and Function of Ion Channels. 2001, 139-162. DOI: 10.1093/oso/9780195145236.003.0007.Peer-Reviewed Original ResearchIon channelsGreat diversityDiversityConsiderable diversityRapid membrane depolarizationMembrane depolarizationElectrical activityVoltage-dependent sodium currentsVoltage-dependent potassium currentsAxonal membraneSquid giant axonNeuronal cell bodiesCell bodiesGiant axonsPotassium currentAction potentialsSodium currentMembraneActivityAxonsNeuromodulation: Mechanisms of Induced Changes in the Electrical Behavior of Nerve Cells
B.Levitan I, Kaczmarek L. Neuromodulation: Mechanisms of Induced Changes in the Electrical Behavior of Nerve Cells. 2001, 315-340. DOI: 10.1093/oso/9780195145236.003.0013.Peer-Reviewed Original ResearchNervous systemNerve cellsElectrical activityAction potential firingNeuronal electrical propertiesEndogenous electrical activityA11 neuronsSynaptic stimulationAction potentialsHormonal stimulationDifferent patternsNeuronsIon channelsStimulationSuch modulationTransduction mechanismsCellsNeuromodulationActivityAdhesion Molecules and Axon Pathfinding
B.Levitan I, Kaczmarek L. Adhesion Molecules and Axon Pathfinding. 2001, 435-466. DOI: 10.1093/oso/9780195145236.003.0017.Peer-Reviewed Original ResearchNervous systemNeuronal activityDendritic branchesSuperior cervical ganglionDendritic branching patternsMature nervous systemTypes of synapsesIntact nervous systemCervical ganglionLong-term regulationSynaptic connectionsIntact animalsNeuronal structuresAdhesion moleculesNeuronsElectrical activityGangliaFluorescent cellsBranching patternDendritesCellsSpecific patternsAxonsMiceActivityFormation, Maintenance, and Plasticity of Chemical Synapses
B.Levitan I, Kaczmarek L. Formation, Maintenance, and Plasticity of Chemical Synapses. 2001, 467-506. DOI: 10.1093/oso/9780195145236.003.0018.Peer-Reviewed Original ResearchNervous systemSynaptic connectionsFormation of synapsesAdult nervous systemSpecific synaptic connectionsImmature neuronsSynaptic contactsAdult neuronsMature neuronsElectrical stimulationSynaptic plasticityNeuronal formBrain functionChemical synapsesNeuronsElectrical activityNeurite elongationSynaptogenesisSynapsesProperties of cellsTargeted Attenuation of Electrical Activity in Drosophila Using a Genetically Modified K+ Channel
White B, Osterwalder T, Yoon K, Joiner W, Whim M, Kaczmarek L, Keshishian H. Targeted Attenuation of Electrical Activity in Drosophila Using a Genetically Modified K+ Channel. Neuron 2001, 31: 699-711. PMID: 11567611, DOI: 10.1016/s0896-6273(01)00415-9.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAnimalsBehavior, AnimalCells, CulturedDrosophila melanogasterDrosophila ProteinsFemaleGene DosageGene Expression Regulation, DevelopmentalGene TargetingGenes, LethalLarvaMembrane PotentialsMusclesMutationNervous SystemNeural InhibitionNeuronsNeurons, AfferentPhenotypePhotoreceptor Cells, InvertebratePotassium ChannelsShaker Superfamily of Potassium ChannelsSynaptic TransmissionTransgenes
1996
Developmental dissociation of excitability and secretory ability in Aplysia bag cell neurons
Nick T, Moreira J, Kaczmarek L, Carew T, Wayne N. Developmental dissociation of excitability and secretory ability in Aplysia bag cell neurons. Journal Of Neurophysiology 1996, 76: 3351-3359. PMID: 8930278, DOI: 10.1152/jn.1996.76.5.3351.Peer-Reviewed Original ResearchConceptsBag cell neuronsEgg-laying behaviorCell neuronsPotential functional significanceAplysia bag cell neuronsDevelopmental regulationVesicular localizationSecretory vesiclesJuvenile AplysiaPremature expressionImmature neuronsDownstream elementsMature formBody sizeReproductive behaviorImmunoelectron microscopyPotassium channel blocker tetraethylammoniumLarge vesiclesDevelopmental interactionsFunctional significanceBag cell hormonesVesiclesCessation of locomotionMature neuronsElectrical activity
1991
Dexamethasone increases potassium channel messenger RNA and activity in clonal pituitary cells.
Levitan E, Hemmick L, Birnberg N, Kaczmarek L. Dexamethasone increases potassium channel messenger RNA and activity in clonal pituitary cells. Endocrinology 1991, 5: 1903-8. PMID: 1791837, DOI: 10.1210/mend-5-12-1903.Peer-Reviewed Original ResearchConceptsPituitary cellsChannel expressionClonal rat pituitary cellsChannel messenger RNAIon channel expressionRat pituitary cellsDose-dependent mannerClonal pituitary cellsAnterior pituitaryLong-term effectsRat hypothalamusSimilar pharmacologyGlucocorticoid agonistGlucocorticoid hormonesChannel mRNAGH3 cellsElectrical activitySecretionSteady-state concentrationsTerm effectsPituitaryExcitable cellsHormoneIon channelsMessenger RNA