2023
Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning
Kucukkaya A, Zeevi T, Chai N, Raju R, Haider S, Elbanan M, Petukhova-Greenstein A, Lin M, Onofrey J, Nowak M, Cooper K, Thomas E, Santana J, Gebauer B, Mulligan D, Staib L, Batra R, Chapiro J. Predicting tumor recurrence on baseline MR imaging in patients with early-stage hepatocellular carcinoma using deep machine learning. Scientific Reports 2023, 13: 7579. PMID: 37165035, PMCID: PMC10172370, DOI: 10.1038/s41598-023-34439-7.Peer-Reviewed Original Research
2022
Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis
Bahar RC, Merkaj S, Petersen G, Tillmanns N, Subramanian H, Brim WR, Zeevi T, Staib L, Kazarian E, Lin M, Bousabarah K, Huttner AJ, Pala A, Payabvash S, Ivanidze J, Cui J, Malhotra A, Aboian MS. Machine Learning Models for Classifying High- and Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis. Frontiers In Oncology 2022, 12: 856231. PMID: 35530302, PMCID: PMC9076130, DOI: 10.3389/fonc.2022.856231.Peer-Reviewed Original ResearchMachine learning modelsLearning modelConvolutional neural networkDeep learning studiesLarge training datasetsGrade predictionSupport vector machineApplication of MLNeural networkConventional machineVector machineTraining datasetBest performing modelCommon algorithmsModel performanceEssential metricMean prediction accuracyHigh predictive accuracyPrediction accuracyPerforming modelMachinePrediction modelDiagnosis statementsAccuracy statementsLearning studies
2020
Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning
Bousabarah K, Letzen B, Tefera J, Savic L, Schobert I, Schlachter T, Staib LH, Kocher M, Chapiro J, Lin M. Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning. Abdominal Radiology 2020, 46: 216-225. PMID: 32500237, PMCID: PMC7714704, DOI: 10.1007/s00261-020-02604-5.Peer-Reviewed Original ResearchConceptsDeep convolutional neural networkAverage false positive rateDice similarity coefficientU-NetDeep learning algorithmsConvolutional neural networkTest setMean Dice similarity coefficientRandom forest classifierDCNN methodDCNN approachDeep learningNet architectureLearning algorithmNeural networkLiver segmentationManual 3D segmentationForest classifierGround truthManual segmentationFalse positive rateCorresponding segmentationSegmentationMultiphasic contrast-enhanced MRIThresholding
2018
2-Channel Convolutional 3D Deep Neural Network (2CC3D) for FMRI Analysis: ASD Classification and Feature Learning
Li X, Dvornek NC, Papademetris X, Zhuang J, Staib LH, Ventola P, Duncan JS. 2-Channel Convolutional 3D Deep Neural Network (2CC3D) for FMRI Analysis: ASD Classification and Feature Learning. 2011 IEEE International Symposium On Biomedical Imaging: From Nano To Macro 2018, 2018: 1252-1255. PMID: 32983370, PMCID: PMC7519578, DOI: 10.1109/isbi.2018.8363798.Peer-Reviewed Original ResearchConvolutional neural networkNeural networkCNN convolutional layerSpatial featuresASD classificationDeep neural networksMean F-scoreTraditional machineFeature learningConvolutional layersInput formatF-scoreClassification modelTemporal informationNetworkWindow parametersImagesClassificationConvolutionalTemporal statisticsMachineLearningFeaturesFormatScheme