2016
Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries
Huang AH, Balestrini JL, Udelsman BV, Zhou KC, Zhao L, Ferruzzi J, Starcher BC, Levene MJ, Humphrey JD, Niklason LE. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries. Tissue Engineering Part C Methods 2016, 22: 524-533. PMID: 27108525, PMCID: PMC4921901, DOI: 10.1089/ten.tec.2015.0309.Peer-Reviewed Original ResearchConceptsTissue-engineered blood vesselsBiaxial loadingMechanical propertiesMechanical strengthFiber orientationMultiaxial loadingLoading conditionsMechanical integrityBiaxial stretchingCollagen undulationArtificial skinNovel bioreactorMechanical failureMatrix orientationBiaxial stretchLoadingAxial stretchCollagen fiber orientationSuture strengthNative arteriesTissue equivalentsStrengthPropertiesCircumferential stretchMatrix content
2011
Decellularized tissue-engineered blood vessel as an arterial conduit
Quint C, Kondo Y, Manson RJ, Lawson JH, Dardik A, Niklason LE. Decellularized tissue-engineered blood vessel as an arterial conduit. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 9214-9219. PMID: 21571635, PMCID: PMC3107282, DOI: 10.1073/pnas.1019506108.Peer-Reviewed Original ResearchConceptsTissue-engineered vesselsBiomimetic perfusion systemArterial tissue engineeringTissue-engineered blood vesselsTissue engineering techniquesEndothelial progenitor cellsTissue engineeringRobust extracellular matrixVein graftsBiological vascular graftPorcine carotid arteriesVascular graftsTissue regenerationIntimal hyperplasiaAutologous endothelial progenitor cellsGraft wallProgenitor cellsControl vein graftsSmooth muscle cellsGraft lumenGraft occlusionArterial conduitsImproved patencyCarotid arteryPorcine smooth muscle cells