2023
Using the ear photoplethysmographic waveform as an early indicator of central hypovolemia in healthy volunteers utilizing LBNP induced hypovolemia model
Eid A, Elgamal M, Gonzalez-Fiol A, Shelley K, Wu H, Alian A. Using the ear photoplethysmographic waveform as an early indicator of central hypovolemia in healthy volunteers utilizing LBNP induced hypovolemia model. Physiological Measurement 2023, 44: 055008. PMID: 37116503, DOI: 10.1088/1361-6579/acd165.Peer-Reviewed Original ResearchMeSH KeywordsBlood PressureHealthy VolunteersHemodynamicsHumansHypovolemiaLower Body Negative PressureOximetryConceptsLower body negative pressureCentral hypovolemiaHealthy volunteersNon-invasive cardiac output monitorProgressive lower body negative pressureNoninvasive blood pressure monitorBody negative pressureCardiac output monitorBlood pressure monitorPhotoplethysmographic waveformPulse oximetry probeHypoperfusion symptomsSymptomatic subjectsHemodynamic indicesLBNP stageStroke volumeEarly predictorLT groupHypovolemiaEarly stagesPressure monitorWaveform indicesEarly indicatorWaveform morphologySymptoms
2014
Impact of lower body negative pressure induced hypovolemia on peripheral venous pressure waveform parameters in healthy volunteers
Alian AA, Galante NJ, Stachenfeld NS, Silverman DG, Shelley KH. Impact of lower body negative pressure induced hypovolemia on peripheral venous pressure waveform parameters in healthy volunteers. Physiological Measurement 2014, 35: 1509-1520. PMID: 24901895, DOI: 10.1088/0967-3334/35/7/1509.Peer-Reviewed Original ResearchConceptsLower body negative pressureBlood pressureBody negative pressureCardiac modulationHeart ratePulse pressurePVP waveformsProgressive lower body negative pressureArterial systolic blood pressureFinger arterial blood pressurePeripheral venous pressure waveformsMmHg lower body negative pressureMean blood pressureDiastolic blood pressureSystolic blood pressureArterial blood pressureArterial BP valuesPressure waveformSignificant reductionMild hypovolemiaVenous pressureHemodynamic changesIntravenous siteRespiratory modulationBP valuesAnalysis of plethysmographic waveform changes induced by beach chair positioning under general anesthesia
Zhu R, Atteya G, Shelley KH, Silverman DG, Alian AA. Analysis of plethysmographic waveform changes induced by beach chair positioning under general anesthesia. Journal Of Clinical Monitoring And Computing 2014, 28: 591-596. PMID: 24420341, DOI: 10.1007/s10877-014-9555-9.Peer-Reviewed Original ResearchConceptsBeach chair positioningVasoactive drugsBlood pressureShoulder surgeryNoninvasive hemodynamic parametersPostoperative cerebral ischemiaMean arterial pressureTidal carbon dioxideBeach chair positionIntermittent blood pressureChair positionWilcoxon signed-rank testPosition surgeryArterial pressureCerebral ischemiaGeneral anesthesiaSigned-rank testHemodynamic parametersRare caseDevastating outcomesHeart rateRespiratory frequencyPatientsSurgeryAmplitude density
2012
Autonomic control mechanism of maximal lower body negative pressure application
Selvaraj N, Shelley K, Silverman D, Stachenfeld N, Chon K. Autonomic control mechanism of maximal lower body negative pressure application. Annual International Conference Of The IEEE Engineering In Medicine And Biology Society (EMBC) 2012, 2012: 3120-3123. PMID: 23366586, DOI: 10.1109/embc.2012.6346625.Peer-Reviewed Original ResearchConceptsLower body negative pressureDiastolic blood pressureHeart rate variabilityBlood pressure variabilityAutonomic control mechanismsPulse pressureSevere hemorrhageTermination of LBNPLower body negative pressure applicationMaximal lower body negative pressureSystolic blood pressure variabilityRoot mean square successive differenceBody negative pressureConscious human subjectsNegative pressure applicationMean square successive differenceSquare successive differenceHigh-frequency powerLBNP applicationSympathetic reflexesAutonomic reflexesSympathetic activityBaroreflex sensitivityBlood pressureLBNP toleranceUsing Time-Frequency Analysis of the Photoplethysmographic Waveform to Detect the Withdrawal of 900 mL of Blood
Scully CG, Selvaraj N, Romberg FW, Wardhan R, Ryan J, Florian JP, Silverman DG, Shelley KH, Chon KH. Using Time-Frequency Analysis of the Photoplethysmographic Waveform to Detect the Withdrawal of 900 mL of Blood. Anesthesia & Analgesia 2012, 115: 74-81. PMID: 22543068, DOI: 10.1213/ane.0b013e318256486c.Peer-Reviewed Original ResearchMeSH KeywordsAdultBlood PressureBlood Pressure DeterminationBlood Transfusion, AutologousBlood VolumeBlood Volume DeterminationCluster AnalysisConnecticutElectrocardiographyHeart RateHumansHypovolemiaInfrared RaysMalePhotoplethysmographyPredictive Value of TestsRespiratory MechanicsSensitivity and SpecificitySignal Processing, Computer-AssistedTime FactorsConceptsML of bloodArterial blood pressureBlood lossBlood pressureHeart rateHeart rate frequencyBlood withdrawalML blood lossMean percent decreaseBlood volume lossHeart rate componentSignificant changesPhotoplethysmographic waveformSpontaneous breathingTrauma settingCuff measurementsPPG waveformBlood reinfusionHealthy volunteersStandard electrocardiogramBloodEarly detectionEar PPG signalsBaselineConfidence intervals
2009
Peripheral venous pressure waveform
Wardhan R, Shelley K. Peripheral venous pressure waveform. Current Opinion In Anaesthesiology 2009, 22: 814. PMID: 19844178, DOI: 10.1097/aco.0b013e328332a343.Peer-Reviewed Original ResearchConceptsPeripheral venous pressure waveformsPeripheral intravenous cathetersPeripheral venous pressurePeripheral venous systemCarotid artery puncturePressure waveformVenous waveformVenous pressureArtery punctureIntraoperative monitoringIntravenous cathetersVenous systemRespiratory variationCardiovascular homeostasisInvasive monitoringArterial waveformProcedure timeVenous componentPhysiologic challengesFurther studiesCirculatory systemInexpensive monitoring deviceNumerous studiesCritical rolePneumothorax
2001
How Does the Plethysmogram Derived from the Pulse Oximeter Relate to Arterial Blood Pressure in Coronary Artery Bypass Graft Patients?
Awad A, Ghobashy M, Stout R, Silverman D, Shelley K. How Does the Plethysmogram Derived from the Pulse Oximeter Relate to Arterial Blood Pressure in Coronary Artery Bypass Graft Patients? Anesthesia & Analgesia 2001, 93: 1466-1471. PMID: 11726424, DOI: 10.1097/00000539-200112000-00022.Peer-Reviewed Original ResearchConceptsMean blood pressureSystolic blood pressureBlood pressurePulse pressurePulse oximeter waveformCoronary artery bypass graft surgeryCoronary artery bypass graft patientsArtery bypass graft surgeryBypass graft surgeryCoronary artery bypassBypass graft patientsRadial artery blood pressure waveformArterial blood pressureBlood pressure waveformArtery bypassGraft patientsGraft surgeryArterial linePatientsFinger oximeterMean differenceClinical applicabilityPulse oximeterPressure waveformOximeter
1997
Arterial–Pulse Oximetry Loops: A New Method of Monitoring Vascular Tone
Shelley K, Bosseau Murray W, Chang D. Arterial–Pulse Oximetry Loops: A New Method of Monitoring Vascular Tone. Journal Of Clinical Monitoring 1997, 13: 223-228. PMID: 9269615, DOI: 10.1023/a:1007361020825.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic alpha-AgonistsAnesthesia, IntravenousArteriesBlood PressureBlood VolumeCalibrationCephalometryDose-Response Relationship, DrugEphedrineFemaleFingersForecastingHeart RateHumansHypotensionIntraoperative ComplicationsMeningiomaMiddle AgedMonitoring, PhysiologicOnline SystemsOximetryPhenylephrinePlethysmographySignal Processing, Computer-AssistedVascular ResistanceVasoconstrictor AgentsVasomotor SystemConceptsPulse oximeter waveformVascular resistanceVascular toneVascular compliancePeripheral vascular complianceVascular compliance changesPeripheral vascular resistanceDose-response curveArterial pressureCase reportArterial waveformClinical informationCompliance changesRelative complianceComplianceTonePhenylephrineOff-line calculation