2022
Centers for Mendelian Genomics: A decade of facilitating gene discovery
Baxter SM, Posey JE, Lake NJ, Sobreira N, Chong JX, Buyske S, Blue EE, Chadwick LH, Coban-Akdemir ZH, Doheny KF, Davis CP, Lek M, Wellington C, Jhangiani SN, Gerstein M, Gibbs RA, Lifton RP, MacArthur DG, Matise TC, Lupski JR, Valle D, Bamshad MJ, Hamosh A, Mane S, Nickerson DA, Consortium C, Adams M, Aguet F, Akay G, Anderson P, Antonescu C, Arachchi H, Atik M, Austin-Tse C, Babb L, Bacus T, Bahrambeigi V, Balasubramanian S, Bayram Y, Beaudet A, Beck C, Belmont J, Below J, Bilguvar K, Boehm C, Boerwinkle E, Boone P, Bowne S, Brand H, Buckingham K, Byrne A, Calame D, Campbell I, Cao X, Carvalho C, Chander V, Chang J, Chao K, Chinn I, Clarke D, Collins R, Cummings B, Dardas Z, Dawood M, Delano K, DiTroia S, Doddapaneni H, Du H, Du R, Duan R, Eldomery M, Eng C, England E, Evangelista E, Everett S, Fatih J, Felsenfeld A, Francioli L, Frazar C, Fu J, Gamarra E, Gambin T, Gan W, Gandhi M, Ganesh V, Garimella K, Gauthier L, Giroux D, Gonzaga-Jauregui C, Goodrich J, Gordon W, Griffith S, Grochowski C, Gu S, Gudmundsson S, Hall S, Hansen A, Harel T, Harmanci A, Herman I, Hetrick K, Hijazi H, Horike-Pyne M, Hsu E, Hu J, Huang Y, Hurless J, Jahl S, Jarvik G, Jiang Y, Johanson E, Jolly A, Karaca E, Khayat M, Knight J, Kolar J, Kumar S, Lalani S, Laricchia K, Larkin K, Leal S, Lemire G, Lewis R, Li H, Ling H, Lipson R, Liu P, Lovgren A, López-Giráldez F, MacMillan M, Mangilog B, Mano S, Marafi D, Marosy B, Marshall J, Martin R, Marvin C, Mawhinney M, McGee S, McGoldrick D, Mehaffey M, Mekonnen B, Meng X, Mitani T, Miyake C, Mohr D, Morris S, Mullen T, Murdock D, Murugan M, Muzny D, Myers B, Neira J, Nguyen K, Nielsen P, Nudelman N, O’Heir E, O’Leary M, Ongaco C, Orange J, Osei-Owusu I, Paine I, Pais L, Paschall J, Patterson K, Pehlivan D, Pelle B, Penney S, Chavez J, Pierce-Hoffman E, Poli C, Punetha J, Radhakrishnan A, Richardson M, Rodrigues E, Roote G, Rosenfeld J, Ryke E, Sabo A, Sanchez A, Schrauwen I, Scott D, Sedlazeck F, Serrano J, Shaw C, Shelford T, Shively K, Singer-Berk M, Smith J, Snow H, Snyder G, Solomonson M, Son R, Song X, Stankiewicz P, Stephan T, Sutton V, Sveden A, Sánchez D, Tackett M, Talkowski M, Threlkeld M, Tiao G, Udler M, Vail L, Valivullah Z, Valkanas E, VanNoy G, Wang Q, Wang G, Wang L, Wangler M, Watts N, Weisburd B, Weiss J, Wheeler M, White J, Williamson C, Wilson M, Wiszniewski W, Withers M, Witmer D, Witzgall L, Wohler E, Wojcik M, Wong I, Wood J, Wu N, Xing J, Yang Y, Yi Q, Yuan B, Zeiger J, Zhang C, Zhang P, Zhang Y, Zhang X, Zhang Y, Zhang S, Zoghbi H, van den Veyver I, Rehm H, O’Donnell-Luria A. Centers for Mendelian Genomics: A decade of facilitating gene discovery. Genetics In Medicine 2022, 24: 784-797. PMID: 35148959, PMCID: PMC9119004, DOI: 10.1016/j.gim.2021.12.005.Peer-Reviewed Original ResearchConceptsGene discoveryMendelian GenomicsUnderstanding of genesGene-phenotype relationshipsGenome variationWorldwide data sharingCandidate genesMendelian phenotypesGenomic researchGenome sequencingMatchmaker ExchangeGenomicsGenesSequencingBiomedical researchMajor roleDiscoveryExomePhenotypeRoleGenotypesCommunity
2021
The genetic structure of the Turkish population reveals high levels of variation and admixture
Kars ME, Başak AN, Onat OE, Bilguvar K, Choi J, Itan Y, Çağlar C, Palvadeau R, Casanova JL, Cooper DN, Stenson PD, Yavuz A, Buluş H, Günel M, Friedman JM, Özçelik T. The genetic structure of the Turkish population reveals high levels of variation and admixture. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2026076118. PMID: 34426522, PMCID: PMC8433500, DOI: 10.1073/pnas.2026076118.Peer-Reviewed Original ResearchConceptsGenetic structureTR populationGenome-wide association studiesRuns of homozygosityGenomes Project populationsHigh inbreeding coefficientsDisease gene discoveryHigh-quality haplotypesPotential medical relevanceGene discoveryExtensive admixturePhenotypic consequencesWhole genomeGenetic basisInbreeding coefficientSpecific genesRare rangeGenome variantsAssociation studiesGenetic relationshipsFunctional consequencesWhole exomeSpecific phenotypesGenotype imputationMedical relevance
2020
Alternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome
Dyment DA, O'Donnell‐Luria A, Agrawal PB, Akdemir Z, Aleck KA, Antaki D, Al Sharhan H, Au P, Aydin H, Beggs AH, Bilguvar K, Boerwinkle E, Brand H, Brownstein CA, Buyske S, Chodirker B, Choi J, Chudley AE, Clericuzio CL, Cox GF, Curry C, de Boer E, de Vries B, Dunn K, Dutmer CM, England EM, Fahrner JA, Geckinli BB, Genetti CA, Gezdirici A, Gibson WT, Gleeson JG, Greenberg CR, Hall A, Hamosh A, Hartley T, Jhangiani SN, Karaca E, Kernohan K, Lauzon JL, Lewis MES, Lowry RB, López‐Giráldez F, Matise TC, McEvoy‐Venneri J, McInnes B, Mhanni A, Minaur S, Moilanen J, Nguyen A, Nowaczyk MJM, Posey JE, Õunap K, Pehlivan D, Pajusalu S, Penney LS, Poterba T, Prontera P, Doriqui MJR, Sawyer SL, Sobreira N, Stanley V, Torun D, Wargowski D, Witmer PD, Wong I, Xing J, Zaki MS, Zhang Y, Consortium C, Genomics C, Boycott KM, Bamshad MJ, Nickerson DA, Blue EE, Innes AM. Alternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome. American Journal Of Medical Genetics Part A 2020, 185: 119-133. PMID: 33098347, PMCID: PMC8197629, DOI: 10.1002/ajmg.a.61926.Peer-Reviewed Original ResearchConceptsGenome sequencingExtensive locus heterogeneityCopy number variationsGenomic analysisMolecular diagnosisSingle geneDe novo variantsNext-generation sequencingDisease genesWide sequencingGenesGenomic diagnosisLocus heterogeneityNovo variantsSequencingPhenotypeAdditional familiesBiallelic variantsHDAC8FamilyVariant filteringDistinctive facial appearanceClinical phenotypeVariantsUncertain significanceExome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus
Jin SC, Dong W, Kundishora AJ, Panchagnula S, Moreno-De-Luca A, Furey CG, Allocco AA, Walker RL, Nelson-Williams C, Smith H, Dunbar A, Conine S, Lu Q, Zeng X, Sierant MC, Knight JR, Sullivan W, Duy PQ, DeSpenza T, Reeves BC, Karimy JK, Marlier A, Castaldi C, Tikhonova IR, Li B, Peña HP, Broach JR, Kabachelor EM, Ssenyonga P, Hehnly C, Ge L, Keren B, Timberlake AT, Goto J, Mangano FT, Johnston JM, Butler WE, Warf BC, Smith ER, Schiff SJ, Limbrick DD, Heuer G, Jackson EM, Iskandar BJ, Mane S, Haider S, Guclu B, Bayri Y, Sahin Y, Duncan CC, Apuzzo MLJ, DiLuna ML, Hoffman EJ, Sestan N, Ment LR, Alper SL, Bilguvar K, Geschwind DH, Günel M, Lifton RP, Kahle KT. Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nature Medicine 2020, 26: 1754-1765. PMID: 33077954, PMCID: PMC7871900, DOI: 10.1038/s41591-020-1090-2.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusPoor neurodevelopmental outcomesPost-surgical patientsCerebrospinal fluid accumulationNeural stem cell biologyGenetic disruptionWhole-exome sequencingPrimary pathomechanismEarly brain developmentNeurodevelopmental outcomesHigh morbidityCSF diversionMutation burdenFluid accumulationBrain ventriclesCH casesBrain developmentDe novo mutationsPatientsExome sequencingCSF dynamicsDisease mechanismsHydrocephalusNovo mutationsCell typesMutations disrupting neuritogenesis genes confer risk for cerebral palsy
Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC, Shetty S, Nordlie SM, Elie A, Corbett MA, Norton BY, van Eyk CL, Haider S, Guida BS, Magee H, Liu J, Pastore S, Vincent JB, Brunstrom-Hernandez J, Papavasileiou A, Fahey MC, Berry JG, Harper K, Zhou C, Zhang J, Li B, Zhao H, Heim J, Webber DL, Frank MSB, Xia L, Xu Y, Zhu D, Zhang B, Sheth AH, Knight JR, Castaldi C, Tikhonova IR, López-Giráldez F, Keren B, Whalen S, Buratti J, Doummar D, Cho M, Retterer K, Millan F, Wang Y, Waugh JL, Rodan L, Cohen JS, Fatemi A, Lin AE, Phillips JP, Feyma T, MacLennan SC, Vaughan S, Crompton KE, Reid SM, Reddihough DS, Shang Q, Gao C, Novak I, Badawi N, Wilson YA, McIntyre SJ, Mane SM, Wang X, Amor DJ, Zarnescu DC, Lu Q, Xing Q, Zhu C, Bilguvar K, Padilla-Lopez S, Lifton RP, Gecz J, MacLennan AH, Kruer MC. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nature Genetics 2020, 52: 1046-1056. PMID: 32989326, PMCID: PMC9148538, DOI: 10.1038/s41588-020-0695-1.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBeta CateninCerebral PalsyCyclin DCytoskeletonDrosophilaExomeExome SequencingExtracellular MatrixF-Box ProteinsFemaleFocal AdhesionsGenetic Predisposition to DiseaseGenome, HumanHumansMaleMutationNeuritesRhoB GTP-Binding ProteinRisk FactorsSequence Analysis, DNASignal TransductionTubulinTumor Suppressor ProteinsConceptsDamaging de novo mutationsCerebral palsyDe novo mutationsCerebral palsy casesRisk genesDamaging de novoNovo mutationsWhole-exome sequencingPalsy casesNeuromotor functionD levelsMonogenic etiologyCyclin D levelsNeuronal connectivityPalsyGene confer riskConfer riskRecessive variantsNeurodevelopmental disorder genesReverse genetic screenDisorder genesParent-offspring triosGenome-wide significanceGenomic factorsCytoskeleton pathway
2019
Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and Hedgehog pathways in syndromic craniosynostosis
Timberlake AT, Jin SC, Nelson-Williams C, Wu R, Furey CG, Islam B, Haider S, Loring E, Galm A, Steinbacher D, Larysz D, Staffenberg D, Flores R, Rodriguez E, Boggon T, Persing J, Lifton R, Lifton RP, Gunel M, Mane S, Bilguvar K, Gerstein M, Loring E, Nelson-Williams C, Lopez F, Knight J. Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and Hedgehog pathways in syndromic craniosynostosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2019, 116: 15116-15121. PMID: 31292255, PMCID: PMC6660739, DOI: 10.1073/pnas.1902041116.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAlpha CateninChildChild, PreschoolCraniosynostosesExomeExome SequencingFemaleGene ExpressionGlypicansHistone AcetyltransferasesHumansMaleMutationNuclear ProteinsPedigreeRisk AssessmentSignal TransductionSkullSOXC Transcription FactorsTranscription Factor AP-2Zinc Finger Protein Gli2ConceptsRare damaging mutationsSyndromic craniosynostosisCongenital anomaliesDamaging mutationsSyndromic casesExome sequencingAdditional congenital anomaliesFrequent congenital anomaliesDamaging de novo mutationsNeural crest cell migrationDamaging de novoCrest cell migrationCS patientsMutation burdenChromatin modifiersSubsequent childrenTranscription factorsDe novo mutationsCS casesCS geneHedgehog pathwayDisease locusPremature fusionFunction mutationsCraniosynostosis
2018
Clonal evolution analysis of paired anaplastic and well‐differentiated thyroid carcinomas reveals shared common ancestor
Dong W, Nicolson NG, Choi J, Barbieri AL, Kunstman JW, Azar S, Knight J, Bilguvar K, Mane SM, Lifton RP, Korah R, Carling T. Clonal evolution analysis of paired anaplastic and well‐differentiated thyroid carcinomas reveals shared common ancestor. Genes Chromosomes And Cancer 2018, 57: 645-652. PMID: 30136351, DOI: 10.1002/gcc.22678.Peer-Reviewed Original ResearchConceptsCommon ancestorProgression of ATCClonal evolution analysisEvolutionary lineagesGenetic relationshipsAnaplastic thyroid carcinomaClonal analysisAncestorEvolution analysisPrivate mutationsMutationsATC tumorsLineal relationshipLineagesNormal tissuesThyroid carcinomaLandscapeFollicular thyroid carcinomaPairsDe Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus
Furey CG, Choi J, Jin SC, Zeng X, Timberlake AT, Nelson-Williams C, Mansuri MS, Lu Q, Duran D, Panchagnula S, Allocco A, Karimy JK, Khanna A, Gaillard JR, DeSpenza T, Antwi P, Loring E, Butler WE, Smith ER, Warf BC, Strahle JM, Limbrick DD, Storm PB, Heuer G, Jackson EM, Iskandar BJ, Johnston JM, Tikhonova I, Castaldi C, López-Giráldez F, Bjornson RD, Knight JR, Bilguvar K, Mane S, Alper SL, Haider S, Guclu B, Bayri Y, Sahin Y, Apuzzo MLJ, Duncan CC, DiLuna ML, Günel M, Lifton RP, Kahle KT. De Novo Mutation in Genes Regulating Neural Stem Cell Fate in Human Congenital Hydrocephalus. Neuron 2018, 99: 302-314.e4. PMID: 29983323, PMCID: PMC7839075, DOI: 10.1016/j.neuron.2018.06.019.Peer-Reviewed Original ResearchConceptsCongenital hydrocephalusNeural stem cell fateHuman congenital hydrocephalusDamaging de novoCerebrospinal fluid homeostasisSubstantial morbidityCH patientsTherapeutic ramificationsSignificant burdenBrain ventriclesCH pathogenesisNeural tube developmentFluid homeostasisDe novo mutationsExome sequencingAdditional probandsHydrocephalusPathogenesisNovo mutationsNovo duplicationProbandsDe novoCell fateMorbidityPatients
2017
Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands
Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi H, Chang W, Sierant MC, Hung WC, Haider S, Zhang J, Knight J, Bjornson RD, Castaldi C, Tikhonoa IR, Bilguvar K, Mane SM, Sanders SJ, Mital S, Russell MW, Gaynor JW, Deanfield J, Giardini A, Porter GA, Srivastava D, Lo CW, Shen Y, Watkins WS, Yandell M, Yost HJ, Tristani-Firouzi M, Newburger JW, Roberts AE, Kim R, Zhao H, Kaltman JR, Goldmuntz E, Chung WK, Seidman JG, Gelb BD, Seidman CE, Lifton RP, Brueckner M. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nature Genetics 2017, 49: 1593-1601. PMID: 28991257, PMCID: PMC5675000, DOI: 10.1038/ng.3970.Peer-Reviewed Original ResearchMeSH KeywordsAdultAutistic DisorderCardiac MyosinsCase-Control StudiesChildExomeFemaleGene ExpressionGenetic Predisposition to DiseaseGenome-Wide Association StudyGrowth Differentiation Factor 1Heart Defects, CongenitalHeterozygoteHigh-Throughput Nucleotide SequencingHomozygoteHumansMaleMutationMyosin Heavy ChainsPedigreeRiskVascular Endothelial Growth Factor Receptor-3GABBR2 mutations determine phenotype in rett syndrome and epileptic encephalopathy
Yoo Y, Jung J, Lee Y, Lee Y, Cho H, Na E, Hong J, Kim E, Lee JS, Lee JS, Hong C, Park S, Wie J, Miller K, Shur N, Clow C, Ebel RS, DeBrosse SD, Henderson LB, Willaert R, Castaldi C, Tikhonova I, Bilgüvar K, Mane S, Kim KJ, Hwang YS, Lee S, So I, Lim BC, Choi H, Seong JY, Shin YB, Jung H, Chae J, Choi M. GABBR2 mutations determine phenotype in rett syndrome and epileptic encephalopathy. Annals Of Neurology 2017, 82: 466-478. PMID: 28856709, DOI: 10.1002/ana.25032.Peer-Reviewed Original ResearchConceptsRett syndromeGenetic factorsAppropriate medical interventionΓ-aminobutyric acid signalingDistinct diagnostic criteriaDevastating neurodevelopmental disorderWhole-exome sequencingAnn NeurolClinical featuresEE patientsEpileptic encephalopathyDe novo variantsNovel genetic factorsDiagnostic criteriaAnimal modelsMedical interventionsAccurate diagnosisReceptor activityReceptor functionSpecific molecular mechanismsPatientsRTT-like patientsNeurodevelopmental disordersNovo variantsMECP2 mutationsDe novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis
Timberlake AT, Furey CG, Choi J, Nelson-Williams C, Loring E, Galm A, Kahle K, Steinbacher D, Larysz D, Persing J, Lifton R, Bilguvar K, Mane S, Tikhonova I, Castaldi C, Knight J. De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: e7341-e7347. PMID: 28808027, PMCID: PMC5584457, DOI: 10.1073/pnas.1709255114.Peer-Reviewed Original ResearchConceptsBone morphogenetic proteinRas/ERKDe novo mutationsNovo mutationsRas/ERK pathwayDamaging de novo mutationsHigh locus heterogeneityRare syndromic diseaseCommon risk variantsInhibitor of WntSyndromic craniosynostosesNew genesParent-offspring triosSyndromic diseaseMorphogenetic proteinsNegative regulatorERK pathwayMore cranial suturesGenesMidline craniosynostosisRisk variantsWntLocus heterogeneityMutationsExome sequencingALPK3 gene mutation in a patient with congenital cardiomyopathy and dysmorphic features
Çağlayan AO, Sezer RG, Kaymakçalan H, Ulgen E, Yavuz T, Baranoski JF, Bozaykut A, Harmanci AS, Yalcin Y, Youngblood MW, Yasuno K, Bilgüvar K, Gunel M. ALPK3 gene mutation in a patient with congenital cardiomyopathy and dysmorphic features. Molecular Case Studies 2017, 3: a001859. PMID: 28630369, PMCID: PMC5593152, DOI: 10.1101/mcs.a001859.Peer-Reviewed Original ResearchConceptsNovel homozygous frameshift mutationWk of gestationHomozygous pathogenic variantNovel disease-causing genesPhenotypic featuresHomozygous frameshift mutationWhole-exome sequencingHeterozygous family membersUnrelated consanguineous familiesEchocardiographic examinationDisease groupPrimary cardiomyopathyMale infantHypertrophic cardiomyopathyRoutine diagnostic toolCardiac diseaseCardiac abnormalitiesMale fetusesCardiomyopathyPathogenic variantsGenetic testingDysmorphic featuresGene mutationsPast historyDisease-causing genesIntegrated genomic analyses of de novo pathways underlying atypical meningiomas
Harmancı AS, Youngblood MW, Clark VE, Coşkun S, Henegariu O, Duran D, Erson-Omay EZ, Kaulen LD, Lee TI, Abraham BJ, Simon M, Krischek B, Timmer M, Goldbrunner R, Omay SB, Baranoski J, Baran B, Carrión-Grant G, Bai H, Mishra-Gorur K, Schramm J, Moliterno J, Vortmeyer AO, Bilgüvar K, Yasuno K, Young RA, Günel M. Integrated genomic analyses of de novo pathways underlying atypical meningiomas. Nature Communications 2017, 8: 14433. PMID: 28195122, PMCID: PMC5316884, DOI: 10.1038/ncomms14433.Peer-Reviewed Original ResearchMeSH KeywordsBinding SitesBrain NeoplasmsCell Transformation, NeoplasticChromosomal InstabilityCluster AnalysisDNA MethylationE2F2 Transcription FactorEnhancer of Zeste Homolog 2 ProteinEpigenomicsExomeForkhead Box Protein M1Gene Expression ProfilingGene Expression Regulation, NeoplasticGene Regulatory NetworksGene SilencingGenes, Neurofibromatosis 2GenomeGenomicsGenotyping TechniquesHuman Embryonic Stem CellsHumansJumonji Domain-Containing Histone DemethylasesMeningeal NeoplasmsMeningiomaMolecular Probe TechniquesMutationPhenotypePolycomb Repressive Complex 2Promoter Regions, GeneticRNA, MessengerSequence AnalysisSignal TransductionSMARCB1 ProteinTranscriptomeConceptsPolycomb repressive complex 2Human embryonic stem cellsRepressive complex 2Integrated genomic analysisEmbryonic stem cellsDe novo pathwayH3K27me3 signalsTranscriptional networksPRC2 complexEpigenomic analysisCellular statesCatalytic subunitGenomic analysisGenomic instabilityHypermethylated phenotypeGenomic landscapeNovo pathwayDisplay lossStem cellsPotential therapeutic targetExhibit upregulationPromoter mutationsTherapeutic targetMutationsComplexes 2Longitudinal analysis of treatment-induced genomic alterations in gliomas
Erson-Omay EZ, Henegariu O, Omay SB, Harmancı AS, Youngblood MW, Mishra-Gorur K, Li J, Özduman K, Carrión-Grant G, Clark VE, Çağlar C, Bakırcıoğlu M, Pamir MN, Tabar V, Vortmeyer AO, Bilguvar K, Yasuno K, DeAngelis LM, Baehring JM, Moliterno J, Günel M. Longitudinal analysis of treatment-induced genomic alterations in gliomas. Genome Medicine 2017, 9: 12. PMID: 28153049, PMCID: PMC5290635, DOI: 10.1186/s13073-017-0401-9.Peer-Reviewed Original ResearchMeSH KeywordsAntineoplastic AgentsChromosome AberrationsCombined Modality TherapyDisease ProgressionDNA Mismatch RepairDNA Mutational AnalysisDNA, NeoplasmExomeFemaleGeneral SurgeryGenome, HumanGenomicsGlioblastomaHumansImmunotherapyLongitudinal StudiesMiddle AgedMutationNeoplasm Recurrence, LocalPrecision MedicineRadiotherapyTreatment OutcomeConceptsWhole-exome sequencingMismatch repair deficiencyImmune checkpoint inhibitionMalignant brain tumorsMolecular changesLongitudinal analysisMedian survivalCheckpoint inhibitionSubsequent recurrenceMaximal resectionStandard treatmentBackgroundGlioblastoma multiformeBrain tumorsTumor-normal pairsFavorable responsePrimary GBMIndividual tumorsConclusionsOur studyPrecision therapyPersonalized treatmentGenomic profilingRepair deficiencyGenomic alterationsGenomic profilesTherapy
2016
Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles
Timberlake AT, Choi J, Zaidi S, Lu Q, Nelson-Williams C, Brooks ED, Bilguvar K, Tikhonova I, Mane S, Yang JF, Sawh-Martinez R, Persing S, Zellner EG, Loring E, Chuang C, Galm A, Hashim PW, Steinbacher DM, DiLuna ML, Duncan CC, Pelphrey KA, Zhao H, Persing JA, Lifton RP. Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. ELife 2016, 5: e20125. PMID: 27606499, PMCID: PMC5045293, DOI: 10.7554/elife.20125.Peer-Reviewed Original ResearchConceptsMidline craniosynostosisInhibitor of BMPCommon variantsDamaging de novoGenetic interactionsPhenotypic variationParent-offspring triosEpistatic interactionsGenetic basisOsteoblast differentiationLocus inheritanceAnalysis of linkageDe novoExome sequencingIncomplete penetranceMutationsTransmitted mutationsRecurrent somatic mutations in POLR2A define a distinct subset of meningiomas
Clark VE, Harmancı AS, Bai H, Youngblood MW, Lee TI, Baranoski JF, Ercan-Sencicek AG, Abraham BJ, Weintraub AS, Hnisz D, Simon M, Krischek B, Erson-Omay EZ, Henegariu O, Carrión-Grant G, Mishra-Gorur K, Durán D, Goldmann JE, Schramm J, Goldbrunner R, Piepmeier JM, Vortmeyer AO, Günel JM, Bilgüvar K, Yasuno K, Young RA, Günel M. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nature Genetics 2016, 48: 1253-1259. PMID: 27548314, PMCID: PMC5114141, DOI: 10.1038/ng.3651.Peer-Reviewed Original ResearchCatalytic DomainChromosomes, Human, Pair 22Cohort StudiesDNA Mutational AnalysisEnhancer Elements, GeneticExomeGene Expression Regulation, NeoplasticGenotypeHumansKruppel-Like Factor 4Kruppel-Like Transcription FactorsMeningeal NeoplasmsMeningiomaMutationNeurofibromin 2RNA Polymerase IITumor Necrosis Factor Receptor-Associated Peptides and ProteinsGenomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma
Bi M, Zhao S, Said JW, Merino MJ, Adeniran AJ, Xie Z, Nawaf CB, Choi J, Belldegrun AS, Pantuck AJ, Kluger HM, Bilgüvar K, Lifton RP, Shuch B. Genomic characterization of sarcomatoid transformation in clear cell renal cell carcinoma. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: 2170-2175. PMID: 26864202, PMCID: PMC4776463, DOI: 10.1073/pnas.1525735113.Peer-Reviewed Original ResearchMeSH KeywordsAgedCarcinoma, Renal CellCell DedifferentiationDNA Mismatch RepairDNA-Binding ProteinsExomeFemaleGenes, p53HumansKidney NeoplasmsLoss of HeterozygosityMaleMiddle AgedMutationNuclear ProteinsOncogenesPolymorphism, Single NucleotidePrognosisTranscription FactorsTumor Suppressor ProteinsUbiquitin ThiolesteraseConceptsClear cell renal cell carcinomaCell renal cell carcinomaRenal cell carcinomaSarcomatoid elementsCarcinomatous elementsCell carcinomaSomatic single nucleotide variantsVon Hippel-Lindau tumor suppressorPoor-prognosis cancerTreatment of patientsTumor protein p53 (TP53) mutationsMismatch repair deficiencyRich interaction domain 1ASarcomatoid featuresPoor prognosisUnknown pathogenesisPolybromo-1TP53 mutationsP53 mutationsSarcomatoid transformationPan-cancer genesExome sequencingTumorsRepair deficiencyProtein 1Renal involvement in patients with mucolipidosis IIIalpha/beta: Causal relation or co‐occurrence?
Tüysüz B, Ercan-Sencicek AG, Canpolat N, Koparır A, Yılmaz S, Kılıçaslan I, Gülez B, Bilguvar K, Günel M. Renal involvement in patients with mucolipidosis IIIalpha/beta: Causal relation or co‐occurrence? American Journal Of Medical Genetics Part A 2016, 170: 1187-1195. PMID: 26749367, DOI: 10.1002/ajmg.a.37543.Peer-Reviewed Original ResearchConceptsRenal involvementFlexion contractureNormal renal functionCause of proteinuriaNephrotic range proteinuriaFocal segmental glomerulosclerosisRare lysosomal storage disorderHereditary kidney diseaseGlomerular visceral epithelial cellsNovel homozygous missense mutationVisceral epithelial cellsWhole-exome sequencingLysosomal storage disorderRenal functionBiopsy findingsRenal biopsyKidney diseaseSegmental glomerulosclerosisFamily historyChildhood onsetGNPTAB geneHealthy siblingsHomozygous missense mutationLarge jointsMild short statureA patient with a novel homozygous missense mutation in FTO and concomitant nonsense mutation in CETP
Çağlayan AO, Tüysüz B, Coşkun S, Quon J, Harmancı AS, Baranoski JF, Baran B, Erson-Omay EZ, Henegariu O, Mane SM, Bilgüvar K, Yasuno K, Günel M. A patient with a novel homozygous missense mutation in FTO and concomitant nonsense mutation in CETP. Journal Of Human Genetics 2016, 61: 395-403. PMID: 26740239, PMCID: PMC4880488, DOI: 10.1038/jhg.2015.160.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-Ketoglutarate-Dependent Dioxygenase FTOApoptosisBiopsyChild, PreschoolCholesterol Ester Transfer ProteinsComputational BiologyConsanguinityDNA Copy Number VariationsDNA Mutational AnalysisExomeFemaleGene ExpressionGene Expression ProfilingGenetic Association StudiesGenotypeHigh-Throughput Nucleotide SequencingHomozygoteHumansMutation, MissensePhenotypeTranscriptome
2015
De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies
Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, DePalma SR, McKean D, Wakimoto H, Gorham J, Jin SC, Deanfield J, Giardini A, Porter GA, Kim R, Bilguvar K, López-Giráldez F, Tikhonova I, Mane S, Romano-Adesman A, Qi H, Vardarajan B, Ma L, Daly M, Roberts AE, Russell MW, Mital S, Newburger JW, Gaynor JW, Breitbart RE, Iossifov I, Ronemus M, Sanders SJ, Kaltman JR, Seidman JG, Brueckner M, Gelb BD, Goldmuntz E, Lifton RP, Seidman CE, Chung WK. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science 2015, 350: 1262-1266. PMID: 26785492, PMCID: PMC4890146, DOI: 10.1126/science.aac9396.Peer-Reviewed Original ResearchConceptsCongenital anomaliesNeurodevelopmental disabilitiesCongenital heart disease patientsDe novo mutationsExtracardiac congenital anomaliesImproved prognostic assessmentEarly therapeutic interventionHeart disease patientsCongenital heart diseaseNovo mutationsCHD patientsDisease patientsHeart diseasePrognostic assessmentCHD casesTherapeutic interventionsPatientsExome sequencingCHDParent-offspring triosMultiple mutationsGenetic contributionMutationsChromatin modificationsTranscriptional regulation