2013
A Bcl-xL–Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis
Li H, Alavian KN, Lazrove E, Mehta N, Jones A, Zhang P, Licznerski P, Graham M, Uo T, Guo J, Rahner C, Duman RS, Morrison RS, Jonas EA. A Bcl-xL–Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis. Nature Cell Biology 2013, 15: 773-785. PMID: 23792689, PMCID: PMC3725990, DOI: 10.1038/ncb2791.Peer-Reviewed Original ResearchConceptsBcl-xLVesicle retrievalProtein-protein interactionsClathrin-coated pitsProtein Bcl-xLCalmodulin-dependent mannerRecruitment of vesiclesNeurotransmitter releaseDepletion of Drp1GTPase Drp1Vesicle endocytosisEndocytic vesiclesMembrane dynamicsPlasma membraneClathrin complexMutagenesis studiesPresynaptic plasticityMitochondrial ATPATP availabilityReserve poolDrp1EndocytosisVesiclesHippocampal neuronsComplexes
2012
N-terminally cleaved Bcl-xL mediates ischemia-induced neuronal death
Ofengeim D, Chen YB, Miyawaki T, Li H, Sacchetti S, Flannery RJ, Alavian KN, Pontarelli F, Roelofs BA, Hickman JA, Hardwick JM, Zukin RS, Jonas EA. N-terminally cleaved Bcl-xL mediates ischemia-induced neuronal death. Nature Neuroscience 2012, 15: 574-580. PMID: 22366758, PMCID: PMC3862259, DOI: 10.1038/nn.3054.Peer-Reviewed Original Research
2011
Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential
Chen YB, Aon MA, Hsu YT, Soane L, Teng X, McCaffery JM, Cheng WC, Qi B, Li H, Alavian KN, Dayhoff-Brannigan M, Zou S, Pineda FJ, O'Rourke B, Ko YH, Pedersen PL, Kaczmarek LK, Jonas EA, Hardwick JM. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. Journal Of Cell Biology 2011, 195: 263-276. PMID: 21987637, PMCID: PMC3198165, DOI: 10.1083/jcb.201108059.Peer-Reviewed Original ResearchConceptsMitochondrial membrane potentialMitochondrial membraneMitochondrial ATP synthase β-subunitATP synthase β subunitBcl-2 family proteinsOuter membrane permeabilizationInner mitochondrial membrane potentialMembrane potentialMitochondrial energetic capacityOuter mitochondrial membraneSynthase β subunitInner mitochondrial membraneInner membrane potentialATP synthaseFamily proteinsBiochemical approachesGenetic evidenceEndogenous BclMembrane permeabilizationCellular resourcesΒ-subunitBcl-xLMitochondrial energeticsEnergetic capacityMitochondrial cristaeBcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase
Alavian KN, Li H, Collis L, Bonanni L, Zeng L, Sacchetti S, Lazrove E, Nabili P, Flaherty B, Graham M, Chen Y, Messerli SM, Mariggio MA, Rahner C, McNay E, Shore GC, Smith PJ, Hardwick JM, Jonas EA. Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nature Cell Biology 2011, 13: 1224-1233. PMID: 21926988, PMCID: PMC3186867, DOI: 10.1038/ncb2330.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsBcl-2 Homologous Antagonist-Killer ProteinBcl-2-Associated X ProteinBcl-X ProteinBiphenyl CompoundsCarbonyl Cyanide p-TrifluoromethoxyphenylhydrazoneCells, CulturedEnergy MetabolismEnzyme InhibitorsHippocampusHydrolysisMembrane Potential, MitochondrialMitochondriaMitochondrial MembranesMitochondrial Proton-Translocating ATPasesNeuronsNitrophenolsOligomycinsOxygen ConsumptionPatch-Clamp TechniquesPiperazinesProton IonophoresRatsRecombinant Fusion ProteinsRNA InterferenceSulfonamidesSynapsesTime FactorsTransfectionConceptsBcl-xLSynthase complexATP synthaseMitochondrial F1Fo-ATP synthaseAnti-apoptotic BCL2 family proteinsF1Fo-ATP synthaseATP synthase complexF1FO-ATPase activityBcl-xL activityATPase activityBcl-xL proteinBCL2 family proteinsEndogenous Bcl-xLPresence of ATPFamily proteinsATPase complexNormal neuronal functionMembrane leak conductanceSubmitochondrial vesiclesΒ-subunitProtect cellsGenetic inhibitionMitochondrial efficiencyF1FoApoptotic molecules
2009
Elevated P75NTR expression causes death of engrailed-deficient midbrain dopaminergic neurons by Erk1/2 suppression
Alavian KN, Sgadò P, Alberi L, Subramaniam S, Simon HH. Elevated P75NTR expression causes death of engrailed-deficient midbrain dopaminergic neurons by Erk1/2 suppression. Neural Development 2009, 4: 11. PMID: 19291307, PMCID: PMC2667502, DOI: 10.1186/1749-8104-4-11.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCell DeathCells, CulturedDisease Models, AnimalDopamineHeterozygoteHomeodomain ProteinsImmunohistochemistryMesencephalonMiceMice, Inbred C57BLMice, KnockoutMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3MutationNerve Tissue ProteinsNeuronsParkinson DiseaseReceptors, Nerve Growth FactorReverse Transcriptase Polymerase Chain ReactionUp-RegulationConceptsMesDA neuronsBcl-2 familyAnti-apoptotic membersCell death signalsExpression levelsMutant embryosHaplotype variationDeath signalsMitochondrial stabilityEngrailedERK1/2 activityEngrailed-1Mitochondrial insultDopaminergic neuronsGenesPostnatal maintenanceReceptor geneElevated expressionMidbrain dopaminergic neuronsHeterozygote animalsDependent mannerMutant miceNigrostriatal dopaminergic systemERK1/2 suppressionMesencephalic dopaminergic neurons
2007
Transcriptional regulation of mesencephalic dopaminergic neurons: The full circle of life and death
Alavian KN, Scholz C, Simon HH. Transcriptional regulation of mesencephalic dopaminergic neurons: The full circle of life and death. Movement Disorders 2007, 23: 319-328. PMID: 18044702, DOI: 10.1002/mds.21640.BooksConceptsTranscription factorsMesencephalic dopaminergic neuronsDopaminergic neuronsLmx1a/bTranscriptional regulationMolecular mechanismsEssential processCellular propertiesSynapse formationDisease mechanismsNeurotransmitter phenotypeLong-term survivalIntense investigationTarget innervationVentral midbrainParkinson's diseaseNeuronal populationsNeurodegenerative ailmentsNeuronsGenesDiseasePitx3PhenotypeNurr1Regulation
2006
Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice
Sgadò P, Albéri L, Gherbassi D, Galasso SL, Ramakers GM, Alavian KN, Smidt MP, Dyck RH, Simon HH. Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 15242-15247. PMID: 17015829, PMCID: PMC1622807, DOI: 10.1073/pnas.0602116103.Peer-Reviewed Original ResearchConceptsDopaminergic neuronsProgressive degenerationParkinson's diseaseMutant miceEngrailed-1Postnatal mutant miceSlow progressive degenerationNigral dopaminergic neuronsMesencephalic dopaminergic neuronsRelease of dopamineKey pathological featureLower body weightMotor deficitsPathological featuresSubstantia nigraCaudate putamenNovel treatmentsBody weightNeurodegenerative disordersHeterozygous nullDiseaseMiceNeuronsMolecular etiologyDependent manner