Featured Publications
Cell surface RNAs control neutrophil recruitment
Zhang N, Tang W, Torres L, Wang X, Ajaj Y, Zhu L, Luan Y, Zhou H, Wang Y, Zhang D, Kurbatov V, Khan S, Kumar P, Hidalgo A, Wu D, Lu J. Cell surface RNAs control neutrophil recruitment. Cell 2024, 187: 846-860.e17. PMID: 38262409, PMCID: PMC10922858, DOI: 10.1016/j.cell.2023.12.033.Peer-Reviewed Original ResearchConceptsCell surfaceMammalian homologOuter cell surfaceRNA transportGlycan modificationsMammalian cellsSID-1Cellular functionsRecruitment to inflammatory sitesGlycoRNARNAMurine neutrophilsFunctional significanceNeutrophil recruitmentNeutrophil recruitment to inflammatory sitesBiological importanceCellsNeutrophil adhesionReduced neutrophil adhesionHomologyGlycansGenesInflammatory sitesRecruitmentEndothelial cells
2023
Ten-Eleven-Translocation Genes in Cancer
Wang Y, Wang X, Lu J. Ten-Eleven-Translocation Genes in Cancer. Cancer Treatment And Research 2023, 190: 363-373. PMID: 38113007, DOI: 10.1007/978-3-031-45654-1_11.Peer-Reviewed Original ResearchConceptsTET mutationsTen-ElevenBiochemical functionsTranslocation (TET) familyTranslocation geneHematopoietic malignanciesHematopoietic expansionGenesHuman cancersMutationsCritical roleImmune responseTET2Clonal hematopoiesisSolid cancersEpigenomeTET1TET3RNABiologyUnanswered questionsDNAHematopoiesisCooperateTETs
2019
MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation
Hu X, Liu ZZ, Chen X, Schulz VP, Kumar A, Hartman AA, Weinstein J, Johnston JF, Rodriguez EC, Eastman AE, Cheng J, Min L, Zhong M, Carroll C, Gallagher PG, Lu J, Schwartz M, King MC, Krause DS, Guo S. MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nature Communications 2019, 10: 1695. PMID: 30979898, PMCID: PMC6461646, DOI: 10.1038/s41467-019-09636-6.Peer-Reviewed Original ResearchConceptsCell fate reprogrammingChromatin accessibilityActin cytoskeletonSomatic cell reprogrammingPluripotency transcription factorsGlobal chromatin accessibilityGenomic accessibilityCytoskeleton (LINC) complexCell reprogrammingCytoskeletal genesTranscription factorsReprogrammingPluripotencyChromatinCytoskeletonMKL1Unappreciated aspectPathwayNuclear volumeNucleoskeletonSUN2CellsActivationGenesExpression
2013
C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells
Di Stefano B, Sardina JL, van Oevelen C, Collombet S, Kallin EM, Vicent GP, Lu J, Thieffry D, Beato M, Graf T. C/EBPα poises B cells for rapid reprogramming into induced pluripotent stem cells. Nature 2013, 506: 235-239. PMID: 24336202, DOI: 10.1038/nature12885.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsB-LymphocytesCCAAT-Enhancer-Binding Protein-alphaCell TransdifferentiationCells, CulturedCellular ReprogrammingChromatinCytosineDeoxyribonuclease IDioxygenasesDNA MethylationDNA-Binding ProteinsEpithelial-Mesenchymal TransitionInduced Pluripotent Stem CellsKruppel-Like Factor 4Kruppel-Like Transcription FactorsMiceOctamer Transcription Factor-3Proto-Oncogene ProteinsProto-Oncogene Proteins c-mycSOXB1 Transcription FactorsUp-RegulationConceptsInduced pluripotent stem cellsPluripotent stem cellsTranscription factors Oct4Stem cellsTET2 enzymeChromatin accessibilityPluripotency genesRapid reprogrammingEfficient reprogrammingFactors OCT4B cell precursorsReprogrammingCell precursorsCellsB cellsGenesKLF4MYCSOX2OverexpressionEnzymeExpressionActivationThe IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis
Liu M, Roth A, Yu M, Morris R, Bersani F, Rivera MN, Lu J, Shioda T, Vasudevan S, Ramaswamy S, Maheswaran S, Diederichs S, Haber DA. The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis. Genes & Development 2013, 27: 2543-2548. PMID: 24298054, PMCID: PMC3861668, DOI: 10.1101/gad.224170.113.Peer-Reviewed Original ResearchConceptsInsulin-like growth factor 2Loss of imprintingUntranslated regionFunctional positive feedback loopRNA helicase DHX9IGF2 mRNAAdditional regulatory mechanismsIntronic miRNANuclear poolHost genesEctopic expressionMicroRNA screenPositive feedback loopIGF2 transcriptionPrimary Wilms tumorsFetal promotersIGF2 transcriptsPromoter contributesRegulatory mechanismsIGF2 geneGrowth factor 2IGF2 expressionTranscriptionGenesMiR-483
2009
Dicer1 functions as a haploinsufficient tumor suppressor
Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J, Kirsch DG, Golub TR, Jacks T. Dicer1 functions as a haploinsufficient tumor suppressor. Genes & Development 2009, 23: 2700-2704. PMID: 19903759, PMCID: PMC2788328, DOI: 10.1101/gad.1848209.Peer-Reviewed Original ResearchConceptsHaploinsufficient tumor suppressor geneTumor suppressor geneSuppressor geneDICER1 functionHaploinsufficient tumor suppressorCopy number dataMiRNA biogenesisMiRNA processingSingle copyGenetic basisDicer1 deletionTumor suppressorInhibition of tumorigenesisHuman cancersGenesFrequent deletionsDeletionDICER1DICER1 expressionHomozygous deletionHuman tumorsAllelesReduced survivalFull lossNumber dataRegulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization
Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ, Erfurth FE, Eaton K, Lu J, Grimes HL, Chen J, Rowley JD, Zeleznik-Le NJ. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 2009, 113: 3314-3322. PMID: 19188669, PMCID: PMC2665896, DOI: 10.1182/blood-2008-04-154310.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCell DifferentiationCell ProliferationCell Transformation, NeoplasticCells, CulturedEmbryonic Stem CellsGene Expression RegulationHistone-Lysine N-MethyltransferaseLeukemiaMiceMice, Inbred C57BLMicroRNAsMolecular Sequence DataMyeloid-Lymphoid Leukemia ProteinRecombinant Fusion ProteinsSequence Homology, Nucleic AcidUp-RegulationConceptsMLL fusion proteinsHox genesMiR-196bLeukemogenic MLL fusion proteinsFusion proteinEmbryonic stem cell differentiationStem cell differentiationDifferentiated hematopoietic cellsShort-term hematopoietic stem cellsMixed lineage leukemia (MLL) geneBone marrow progenitor cellsLeukemia developmentHOXA clusterHematopoietic stem cellsPrimary leukemia samplesChimeric proteinMarrow progenitor cellsHematopoietic lineagesCell differentiationLeukemia geneFusion contributesChromosomal translocationsHematopoietic cellsGenesStem cells
2005
Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals
Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 2005, 434: 338-345. PMID: 15735639, PMCID: PMC2923337, DOI: 10.1038/nature03441.Peer-Reviewed Original ResearchConceptsMiRNA genesRegulatory motifsNew miRNA genesHuman miRNA genesPost-transcriptional regulationCommon regulatory motifsLikely target genesMammalian genomesDog genomeGene regulationPromoter analysisHuman genomeHuman genesHuman promotersTarget genesUntranslated regionSystematic discoveryGenomeComprehensive identificationGenesNew motifMotifCandidate motifsFunctional elementsPromoter
2001
Roads to polyploidy: The megakaryocyte example
Ravid K, Lu J, Zimmet JM, Jones MR. Roads to polyploidy: The megakaryocyte example. Journal Of Cellular Physiology 2001, 190: 7-20. PMID: 11807806, DOI: 10.1002/jcp.10035.Peer-Reviewed Original ResearchConceptsCell cycleHigher ploidyHaploid chromosome numberGroup of genesEndomitotic cell cycleChromosome numberMammalian cellsCell physiologyDifferent cell cyclesAnaphase BS phaseMultiple copiesCell typesPlatelet precursorsPolyploidyGenesMegakaryocytesPloidyPolyploidizationCytokinesisInsectsCellsMitosisPlantsPhysiology