2024
Nanotechnology approaches to drug delivery for the treatment of ischemic stroke
Peng B, Mohammed F, Tang X, Liu J, Sheth K, Zhou J. Nanotechnology approaches to drug delivery for the treatment of ischemic stroke. Bioactive Materials 2024, 43: 145-161. PMID: 39386225, PMCID: PMC11462157, DOI: 10.1016/j.bioactmat.2024.09.016.Peer-Reviewed Original ResearchBlood-brain barrierClinical translationClinical trialsFDA-approved pharmacotherapiesReview therapeutic agentsIschemic strokeTherapeutic agentsEffective treatment optionDrug deliveryTreatment of ischemic strokePotential clinical translationGlobal public health concernImprove delivery efficiencyTreatment optionsTreatment strategiesIschemic brainPublic health concernStroke pharmacotherapyEngineered nanoparticlesStroke treatment strategiesDelivery efficiencyNanotechnological approachesDrugPharmacotherapyStrokeAutocatalytic, Brain Tumor‐Targeting Delivery of Bardoxolone Methyl Self‐Assembled Nanoparticles for Glioblastoma Treatment
Ye Z, Sheu W, Qu H, Peng B, Liu J, Zhang L, Yuan F, Wei Y, Zhou J, Chen Q, Xiao X, Zhang S. Autocatalytic, Brain Tumor‐Targeting Delivery of Bardoxolone Methyl Self‐Assembled Nanoparticles for Glioblastoma Treatment. Small Science 2024, 4 DOI: 10.1002/smsc.202470027.Peer-Reviewed Original ResearchCathepsin B Nuclear Flux in a DNA-Guided “Antinuclear Missile” Cancer Therapy
Cao F, Tang C, Chen X, Tu Z, Jin Y, Turk O, Nishimura R, Ebens A, Dubljevic V, Campbell J, Zhou J, Hansen J. Cathepsin B Nuclear Flux in a DNA-Guided “Antinuclear Missile” Cancer Therapy. ACS Central Science 2024, 10: 1562-1572. PMID: 39220699, PMCID: PMC11363321, DOI: 10.1021/acscentsci.4c00559.Peer-Reviewed Original ResearchAntinuclear antibodiesCancer therapyTumor-specific surface antigenLysosomal protease cathepsin BAntibody-drug conjugatesNecrotic tumorTumor environmentExtracellular nucleic acidsSurface antigensProtease cathepsin BCancer cellsTumorNucleoside salvage pathwayDrug linkersNucleoside salvageTherapyCross membrane barriersMembrane barrierCathepsin BLiving cancer cellsDNA guidesAntinuclearSalvage pathwayCathepsinNuclear penetrationAutocatalytic, Brain Tumor‐Targeting Delivery of Bardoxolone Methyl Self‐Assembled Nanoparticles for Glioblastoma Treatment
Ye Z, Sheu W, Qu H, Peng B, Liu J, Zhang L, Yuan F, Wei Y, Zhou J, Chen Q, Xiao X, Zhang S. Autocatalytic, Brain Tumor‐Targeting Delivery of Bardoxolone Methyl Self‐Assembled Nanoparticles for Glioblastoma Treatment. Small Science 2024, 4 DOI: 10.1002/smsc.202400081.Peer-Reviewed Original ResearchBlood-brain barrierBardoxolone methylGlioblastoma multiformeBrain tumorsSurvival of miceSelf-assembled nanoparticlesInhibited GBM tumor growthEnhance drug penetrationGlioblastoma multiforme treatmentKill GBM cellsLack of effective drugsTumor growthDrug penetrationIntravenous administrationP28 peptideEffective drugsGlioblastoma treatmentTumorClinical applicationGBM cellsPeptide-conjugatesTreatmentBrainBardoxoloneGlioblastomaCorrection: pH-Responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis
Fan Z, Zhou S, Garcia C, Fan L, Zhou J. Correction: pH-Responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale 2024, 16: 5442-5442. PMID: 38372010, DOI: 10.1039/d4nr90035a.Peer-Reviewed Original Research
2023
Self‐Assembled nanoparticles of natural bioactive molecules enhance the delivery and efficacy of paclitaxel in glioblastoma
Li Y, Zhao Q, Zhu X, Zhou L, Song P, Liu B, Tian D, Chen Q, Zhou J, Deng G. Self‐Assembled nanoparticles of natural bioactive molecules enhance the delivery and efficacy of paclitaxel in glioblastoma. CNS Neuroscience & Therapeutics 2023, 30: e14528. PMID: 38044793, PMCID: PMC11017454, DOI: 10.1111/cns.14528.Peer-Reviewed Original ResearchBlood-brain barrierP-gp inhibitorsCerebral vascular endothelial cellsStrong anti-tumor effectsCommon primary malignant tumorApplication of paclitaxelEfflux transportersPrimary malignant tumorsUse of paclitaxelEfficacy of paclitaxelAnti-tumor effectsPeripheral solid tumorsCentral nervous systemNatural bioactive moleculesEffective anti-cancer drugsP-gp transporterVascular endothelial cellsBlood concentrationsMalignant tumorsGlioma treatmentNervous systemP-gpAnti-cancer drugsSolid tumorsTumor tissue
2020
LRRC31 inhibits DNA repair and sensitizes breast cancer brain metastasis to radiation therapy
Chen Y, Jiang T, Zhang H, Gou X, Han C, Wang J, Chen AT, Ma J, Liu J, Chen Z, Jing X, Lei H, Wang Z, Bao Y, Baqri M, Zhu Y, Bindra RS, Hansen JE, Dou J, Huang C, Zhou J. LRRC31 inhibits DNA repair and sensitizes breast cancer brain metastasis to radiation therapy. Nature Cell Biology 2020, 22: 1276-1285. PMID: 33005030, PMCID: PMC7962994, DOI: 10.1038/s41556-020-00586-6.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisAtaxia Telangiectasia Mutated ProteinsBrain NeoplasmsBreast NeoplasmsCell ProliferationDNA DamageDNA RepairFemaleGamma RaysHumansMiceMice, Inbred BALB CMice, NudeMutS Homolog 2 ProteinNuclear ProteinsPhosphorylationRadiation-Sensitizing AgentsSignal TransductionTumor Cells, CulturedXenograft Model Antitumor AssaysTargeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids
Li S, Su W, Wu H, Yuan T, Yuan C, Liu J, Deng G, Gao X, Chen Z, Bao Y, Yuan F, Zhou S, Tan H, Li Y, Li X, Fan L, Zhu J, Chen AT, Liu F, Zhou Y, Li M, Zhai X, Zhou J. Targeted tumour theranostics in mice via carbon quantum dots structurally mimicking large amino acids. Nature Biomedical Engineering 2020, 4: 704-716. PMID: 32231314, PMCID: PMC7197249, DOI: 10.1038/s41551-020-0540-y.Peer-Reviewed Original ResearchConceptsAmino acid transporter 1Orthotopic mouse modelHuman tumor xenograftsLarge neutral amino acid transporter 1Neutral amino acid transporter 1High tumor selectivityTumor burdenMouse modelTumor xenograftsHuman gliomasDetectable toxicityTransporter 1TumorsCancer cellsTumor selectivitySurface moleculesDelivery of chemotherapeuticsTumor-specific imagingMiceDrugsLarge amino acidsAmino acidsImagingDeliveryXenografts
2018
Activatable Protein Nanoparticles for Targeted Delivery of Therapeutic Peptides
Yu X, Gou X, Wu P, Han L, Tian D, Du F, Chen Z, Liu F, Deng G, Chen AT, Ma C, Liu J, Hashmi SM, Guo X, Wang X, Zhao H, Liu X, Zhu X, Sheth K, Chen Q, Fan L, Zhou J. Activatable Protein Nanoparticles for Targeted Delivery of Therapeutic Peptides. Advanced Materials 2018, 30: e1803888. PMID: 30507051, DOI: 10.1002/adma.201803888.Peer-Reviewed Original ResearchThrombin-Responsive, Brain-Targeting Nanoparticles for Improved Stroke Therapy
Guo X, Deng G, Liu J, Zou P, Du F, Liu F, Chen AT, Hu R, Li M, Zhang S, Tang Z, Han L, Liu J, Sheth KN, Chen Q, Gou X, Zhou J. Thrombin-Responsive, Brain-Targeting Nanoparticles for Improved Stroke Therapy. ACS Nano 2018, 12: 8723-8732. PMID: 30107729, DOI: 10.1021/acsnano.8b04787.Peer-Reviewed Original ResearchConceptsBrain-targeted nanoparticlesIschemic brainEfficacy of glyburideImproved treatmentIschemic brain tissueEffective pharmacological approachBlood-brain barrierMatrix metalloproteinase-9Ischemic strokeStroke patientsStroke therapyMetalloproteinase-9Current treatmentPharmacological approachesBrain tissueIschemic microenvironmentTherapeutic drugsGreater delivery efficiencyBrainClinical applicationStrokeTreatmentTargeted deliveryEfficacyVariety of formulations
2016
Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging
Han L, Kong DK, Zheng MQ, Murikinati S, Ma C, Yuan P, Li L, Tian D, Cai Q, Ye C, Holden D, Park JH, Gao X, Thomas JL, Grutzendler J, Carson RE, Huang Y, Piepmeier JM, Zhou J. Increased Nanoparticle Delivery to Brain Tumors by Autocatalytic Priming for Improved Treatment and Imaging. ACS Nano 2016, 10: 4209-4218. PMID: 26967254, PMCID: PMC5257033, DOI: 10.1021/acsnano.5b07573.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntineoplastic AgentsBiological TransportBlood-Brain BarrierBrain NeoplasmsCell Line, TumorDecanoic AcidsDrug Delivery SystemsEthanolaminesFemaleGenetic TherapyHeterograftsHumansMatrix Metalloproteinase 2MiceMice, Inbred C57BLNanoparticlesOptical ImagingPaclitaxelPermeabilityPolymersPurinesPyrazolesScorpion VenomsTranscytosisTumor MicroenvironmentConceptsBlood-brain barrierLow delivery efficiencyTransport of nanoparticlesCancer gene therapyNanoparticle deliveryMore nanoparticlesBrain tumorsNanoparticlesDelivery efficiencyGene therapySystemic deliveryNPsBrain malignanciesBBB modulatorsPharmacological agentsBrain cancerBrain regionsTumorsDeliveryBrainImproved treatmentInadequate amountsPositive feedback loopChemotherapyMalignancy
2013
Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma
Zhou J, Patel TR, Sirianni RW, Strohbehn G, Zheng MQ, Duong N, Schafbauer T, Huttner AJ, Huang Y, Carson RE, Zhang Y, Sullivan DJ, Piepmeier JM, Saltzman WM. Highly penetrative, drug-loaded nanocarriers improve treatment of glioblastoma. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 11751-11756. PMID: 23818631, PMCID: PMC3718184, DOI: 10.1073/pnas.1304504110.Peer-Reviewed Original Research
2011
Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery
Zhou J, Liu J, Cheng CJ, Patel TR, Weller CE, Piepmeier JM, Jiang Z, Saltzman WM. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nature Materials 2011, 11: 82-90. PMID: 22138789, PMCID: PMC4180913, DOI: 10.1038/nmat3187.Peer-Reviewed Original ResearchConceptsGene deliveryNon-viral gene deliveryEfficient gene deliveryGene delivery abilityTargeted gene deliveryHighest molecular weight terpolymerDelivery abilityTargeted deliveryLipofectamine 2000Dialkyl diesterVivo applicationsPolycationic vectorsSpecific ring sizesTRAIL geneHigh efficiencyCharge densityLow charge densityDeliveryPolyethylenimineMinimal toxicityEfficiencyHydrophobicityLactone contentDensityApplications
2007
Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance
Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, Margolick JB, Liotta LA, Petricoin E, Zhang Y. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 16158-16163. PMID: 17911267, PMCID: PMC2042178, DOI: 10.1073/pnas.0702596104.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBreast NeoplasmsCell CycleCell Line, TumorCell SurvivalFemaleHumansMiceMice, NudeModels, BiologicalNeoplasm TransplantationNeoplastic Stem CellsOligonucleotide Array Sequence AnalysisProtein KinasesPTEN PhosphohydrolaseSignal TransductionSTAT3 Transcription FactorTOR Serine-Threonine KinasesConceptsCancer stem-like cellsStem-like cellsNon-SP cellsSP cellsATP-binding cassette (ABC) transportersTarget of rapamycinActivator of transcriptionCDNA microarray analysisPathway-specific inhibitorsSTAT3 pathwayVivo tumorigenicity assaysProtein microarray technologyRare cell populationsCytometry cell cycle analysisSide population cellsColony formation abilityMTOR/STAT3 pathwayCell maintenanceSignal transductionBreast cancer stem-like cellsGene knockdownNegative regulatorCassette transportersMicroarray analysisCell cycle analysis