2024
Cathepsin B Nuclear Flux in a DNA-Guided “Antinuclear Missile” Cancer Therapy
Cao F, Tang C, Chen X, Tu Z, Jin Y, Turk O, Nishimura R, Ebens A, Dubljevic V, Campbell J, Zhou J, Hansen J. Cathepsin B Nuclear Flux in a DNA-Guided “Antinuclear Missile” Cancer Therapy. ACS Central Science 2024, 10: 1562-1572. PMID: 39220699, PMCID: PMC11363321, DOI: 10.1021/acscentsci.4c00559.Peer-Reviewed Original ResearchAntinuclear antibodiesCancer therapyTumor-specific surface antigenLysosomal protease cathepsin BAntibody-drug conjugatesNecrotic tumorTumor environmentExtracellular nucleic acidsSurface antigensProtease cathepsin BCancer cellsTumorNucleoside salvage pathwayDrug linkersNucleoside salvageTherapyCross membrane barriersMembrane barrierCathepsin BLiving cancer cellsDNA guidesAntinuclearSalvage pathwayCathepsinNuclear penetration
2021
Recognition and Management of Adverse Radiation Effects
Cheok S, Hansen J, Chiang V. Recognition and Management of Adverse Radiation Effects. 2021, 391-404. DOI: 10.1201/9781003167464-36.ChaptersAdverse radiation effectsRadiation necrosisStereotactic radiosurgeryRole of SRSImmune-mediated componentLaser interstitial thermotherapyMore brain lesionsBrain metastasesSystemic therapyIntracranial pathologyMalignant pathologyBrain lesionsNecrosisInterstitial thermotherapyPathologyContemporary evidenceBevacizumabCraniotomyMetastasisTherapyLesionsRadiosurgerySteroids
2015
Optimizing a Lupus Autoantibody for Targeted Cancer Therapy
Noble PW, Chan G, Young MR, Weisbart RH, Hansen JE. Optimizing a Lupus Autoantibody for Targeted Cancer Therapy. Cancer Research 2015, 75: 2285-2291. PMID: 25832653, DOI: 10.1158/0008-5472.can-14-2278.Peer-Reviewed Original Research
2014
A nucleolytic lupus autoantibody is toxic to BRCA2-deficient cancer cells
Noble PW, Young MR, Bernatsky S, Weisbart RH, Hansen JE. A nucleolytic lupus autoantibody is toxic to BRCA2-deficient cancer cells. Scientific Reports 2014, 4: 5958. PMID: 25091037, PMCID: PMC5380011, DOI: 10.1038/srep05958.Peer-Reviewed Original ResearchConceptsLupus autoantibodiesTherapeutic agentsCancer cellsSystemic lupus erythematosusBRCA2-deficient cellsLupus erythematosusBRCA2-deficient cancer cellsDLD1 colon cancer cellsColon cancer cellsSuch antibodiesLower riskAutoantibodiesSpecific cancersAntibodiesMalignancyDifferential effectsToxic effectsPotential utilityCellsAgentsFurther supportDNA-damaging agentsErythematosusTherapyCancer
2012
Targeting Cancer with a Lupus Autoantibody
Hansen JE, Chan G, Liu Y, Hegan DC, Dalal S, Dray E, Kwon Y, Xu Y, Xu X, Peterson-Roth E, Geiger E, Liu Y, Gera J, Sweasy JB, Sung P, Rockwell S, Nishimura RN, Weisbart RH, Glazer PM. Targeting Cancer with a Lupus Autoantibody. Science Translational Medicine 2012, 4: 157ra142. PMID: 23100628, PMCID: PMC3713477, DOI: 10.1126/scitranslmed.3004385.Peer-Reviewed Original ResearchConceptsSystemic lupus erythematosusAnti-DNA antibodiesLupus autoantibodiesProstate cancerCancer therapyLupus anti-DNA antibodiesHuman tumor xenograftsDNA-damaging therapiesCultured tumor cellsSLE patientsLupus erythematosusSLE pathophysiologyAutoimmune diseasesDose doxorubicinTumor xenograftsAutoantibodiesHuman cancer cellsTherapyTherapeutic agentsTumor cellsCancerCancer cellsLupusMalignancyPrecise roleA Cell-Penetrating Bispecific Antibody for Therapeutic Regulation of Intracellular Targets
Weisbart RH, Gera JF, Chan G, Hansen JE, Li E, Cloninger C, Levine AJ, Nishimura RN. A Cell-Penetrating Bispecific Antibody for Therapeutic Regulation of Intracellular Targets. Molecular Cancer Therapeutics 2012, 11: 2169-2173. PMID: 22863609, DOI: 10.1158/1535-7163.mct-12-0476-t.Peer-Reviewed Original ResearchConceptsBispecific antibodiesBispecific single-chain Fv fragmentsMonoclonal antibody 3G5Cancer therapyDelivery of antibodiesIntracellular targetsMolecular therapyTherapeutic useTherapeutic regulationMonoclonal antibodiesTherapyAntibodiesMAb 3E10Single-chain Fv fragmentInhibits growthP53 levelsImportant targetMDM2Limited accessFv fragmentTargetTumors
2009
Antibody-mediated FOXP3 protein therapy induces apoptosis in cancer cells in vitro and inhibits metastasis in vivo.
Heinze E, Baldwin S, Chan G, Hansen J, Song J, Clements D, Aragon R, Nishimura R, Reeves M, Weisbart R. Antibody-mediated FOXP3 protein therapy induces apoptosis in cancer cells in vitro and inhibits metastasis in vivo. International Journal Of Oncology 2009, 35: 167-73. PMID: 19513564, DOI: 10.3892/ijo_00000325.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, MonoclonalApoptosisBreast NeoplasmsCaspase 3Cell Line, TumorCell SurvivalColorectal NeoplasmsDose-Response Relationship, DrugFemaleForkhead Transcription FactorsHumansImmunoconjugatesImmunoglobulin FragmentsLiver NeoplasmsMiceMice, Inbred BALB COvarian NeoplasmsRecombinant Fusion ProteinsTransfectionConceptsColon cancer metastasisCancer cellsCancer metastasisColon cancer cellsBALB/c miceProtein therapyImmune suppressive functionCell deathDose-dependent cell deathRegulatory cellsTumor burdenClinical efficacySyngeneic modelC miceNuclear transcription factorMouse modelSuppressive functionInhibits metastasisMetastasisZ-VAD-FMKClinical potentialTherapyCaspase-3Foxp3Cell killing
2007
Antibody-Mediated p53 Protein Therapy Prevents Liver Metastasis In vivo
Hansen JE, Fischer LK, Chan G, Chang SS, Baldwin SW, Aragon RJ, Carter JJ, Lilly M, Nishimura RN, Weisbart RH, Reeves ME. Antibody-Mediated p53 Protein Therapy Prevents Liver Metastasis In vivo. Cancer Research 2007, 67: 1769-1774. PMID: 17308119, DOI: 10.1158/0008-5472.can-06-3783.Peer-Reviewed Original ResearchConceptsLiver metastasesMetastasis ScoreBALB/c miceCancer metastasisCancer cellsMediator of intracellularColon cancer metastasisProtein therapySplenic injectionClinical efficacyControl miceDelivery of p53Significant clinical potentialC micePortal veinColon cancer cellsImmunohistochemical stainingMouse modelSecond injectionMetastasisClinical potentialMiceTherapyVivoP53
2006
Antibody-mediated Hsp70 protein therapy
Hansen JE, Sohn W, Kim C, Chang SS, Huang NC, Santos DG, Chan G, Weisbart RH, Nishimura RN. Antibody-mediated Hsp70 protein therapy. Brain Research 2006, 1088: 187-196. PMID: 16630585, DOI: 10.1016/j.brainres.2006.03.025.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornBlotting, WesternCell SurvivalCells, CulturedCerebral CortexChlorocebus aethiopsDose-Response Relationship, DrugHSP70 Heat-Shock ProteinsHumansHydrogen PeroxideImmunoglobulin Variable RegionNeuronsOxidantsProtein TransportRatsRats, WistarRecombinant Fusion ProteinsTransduction, GeneticTransfectionConceptsPrimary rat cortical neuronsRat cortical neuronsCortical neuronsIntracellular HSP70 levelsCOS-7 cellsSingle-chain Fv fragmentAnti-DNA antibodiesProtein therapyIntracellular HSP70Stressful stimuliFv fragmentMAb 3E10Hsp70 levelsNeuronsTherapyProtein transduction domainSubsequent exposureCellsHuman diseasesNovel protein transduction domainFirst evidenceTransduction domainLiving cellsHSP70Fusion protein
2004
Antibody-mediated transduction of p53 selectively kills cancer cells.
Weisbart RH, Hansen JE, Chan G, Wakelin R, Chang SS, Heinze E, Miller CW, Koeffler PH, Yang F, Cole GM, Min YS, Nishimura RN. Antibody-mediated transduction of p53 selectively kills cancer cells. International Journal Of Oncology 2004, 25: 1867-73. PMID: 15547728, DOI: 10.3892/ijo.25.6.1867.Peer-Reviewed Original ResearchConceptsCancer cellsWild-type p53Expression of MDM2Cancer cell linesTransduction of p53Potential efficacyCertain cancersNon-specific toxicityFunctional defectsHuman cancersP53Cell linesCancerResult of mutationsGene therapyPrimary cellsViral vectorsCellsVivoNuclear exclusionTherapyFusion proteinFv fragmentProtein transductionAntibodies