2016
Machine learning–based 3‐D geometry reconstruction and modeling of aortic valve deformation using 3‐D computed tomography images
Liang L, Kong F, Martin C, Pham T, Wang Q, Duncan J, Sun W. Machine learning–based 3‐D geometry reconstruction and modeling of aortic valve deformation using 3‐D computed tomography images. International Journal For Numerical Methods In Biomedical Engineering 2016, 33 PMID: 27557429, PMCID: PMC5325825, DOI: 10.1002/cnm.2827.Peer-Reviewed Original ResearchMeSH KeywordsAortic ValveComputer SimulationFinite Element AnalysisHumansImaging, Three-DimensionalMachine LearningTomography, X-Ray ComputedConceptsHuman expertsGeometry reconstructionHuman errorMean discrepancyPreoperative planning systemComputational modeling processReconstructed geometryFinite element model generationModel generationPatient-specific computational modelingCardiac imagesComputational modeling methodsFast feedbackComputational modeling frameworkModeling processMesh correspondencePlanning systemModeling methodMachineModeling frameworkAortic valveImagesDisease diagnosisLarge patient cohortIndividual patient needsTowards patient-specific modeling of mitral valve repair: 3D transesophageal echocardiography-derived parameter estimation
Zhang F, Kanik J, Mansi T, Voigt I, Sharma P, Ionasec RI, Subrahmanyan L, Lin BA, Sugeng L, Yuh D, Comaniciu D, Duncan J. Towards patient-specific modeling of mitral valve repair: 3D transesophageal echocardiography-derived parameter estimation. Medical Image Analysis 2016, 35: 599-609. PMID: 27718462, DOI: 10.1016/j.media.2016.09.006.Peer-Reviewed Original ResearchConceptsMitral valve modelingTemporal informationPatient-specific modelingImage acquisitionEuclidean distanceValve modelingComputational frameworkExtended Kalman filterImage analysisModeling frameworkKalman filterFrameworkAverage errorMitral valve geometryTEE imagesInformationMachineParameter estimationClosed mitral valveLeaflet material propertiesSubjective predictionModelingImagesRepresentationOptimization
2007
Boundary element method-based regularization for recovering of LV deformation
Yan P, Sinusas A, Duncan JS. Boundary element method-based regularization for recovering of LV deformation. Medical Image Analysis 2007, 11: 540-554. PMID: 17584521, DOI: 10.1016/j.media.2007.04.007.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsAnimalsComputer SimulationDogsElasticityFinite Element AnalysisHumansImage EnhancementImage Interpretation, Computer-AssistedImaging, Three-DimensionalMagnetic Resonance ImagingModels, CardiovascularReproducibility of ResultsSensitivity and SpecificityStress, MechanicalVentricular Dysfunction, LeftConceptsBoundary element methodImage sequencesElement methodDisplacement fieldDense displacement fieldNew regularization modelDeformationRegularization modelCardiac magnetic resonance image sequencesMagnetic resonance image sequencesEchocardiographic image sequencesLattice densityFeature informationComputation timePhysical plausibilityImage dataDisplacementMatching strategy
2005
A Boundary Element-Based Approach to Analysis of LV Deformation
Yan P, Lin N, Sinusas AJ, Duncan JS. A Boundary Element-Based Approach to Analysis of LV Deformation. Lecture Notes In Computer Science 2005, 8: 778-785. PMID: 16685917, DOI: 10.1007/11566465_96.Peer-Reviewed Original Research
2002
Estimation of 3-D Left Ventricular Deformation from Medical Images Using Biomechanical Models
Papademetris* X, Sinusas AJ, Dione DP, Constable RT, Duncan JS. Estimation of 3-D Left Ventricular Deformation from Medical Images Using Biomechanical Models. IEEE Transactions On Medical Imaging 2002, 21: 786. PMID: 12374316, DOI: 10.1109/tmi.2002.801163.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsAnimalsCoronary DiseaseDogsElasticityFinite Element AnalysisHeart VentriclesHumansImage EnhancementImaging, Three-DimensionalMagnetic Resonance Imaging, CineModels, CardiovascularPattern Recognition, AutomatedReproducibility of ResultsSensitivity and SpecificityStress, MechanicalConceptsDense motion fieldRegional cardiac deformationLinear elastic modelSoft tissue deformationMotion fieldTerms of strainBiomechanical modelDeformation estimationTissue deformationFiber directionDeformationThree-dimensional image sequencesCardiac deformationHeart wallGood agreementHeart deformationGeneric methodologyMuscle fiber directionImage-derived informationImage sequencesEstimationWallSpecific directionQuantitative estimationInitial correspondence