Featured Publications
Genomic Analysis in the Age of Human Genome Sequencing
Lappalainen T, Scott AJ, Brandt M, Hall IM. Genomic Analysis in the Age of Human Genome Sequencing. Cell 2019, 177: 70-84. PMID: 30901550, PMCID: PMC6532068, DOI: 10.1016/j.cell.2019.02.032.Peer-Reviewed Original ResearchMeSH KeywordsBiological Specimen BanksChromosome MappingGenetic Predisposition to DiseaseGenetic TestingGenetic VariationGenome-Wide Association StudyGenome, HumanGenomicsHigh-Throughput Nucleotide SequencingHuman Genome ProjectHumansPolymorphism, Single NucleotideSequence Analysis, DNAWhole Genome SequencingConceptsFunctional genomics approachAllele frequency spectrumHuman genome sequencingGene mapping studiesGenome sequencing technologiesRare human diseasesWhole-genome sequencingGenomic approachesGenetic variant discoveryGenome variationHuman genomeGenome analysisGenomic analysisSequencing technologiesGenome sequencingVariant discoveryHuman diseasesHuman geneticsGenomeFunctional interpretationMapping studiesFunctional effectsSequencingGermline variantsGeneticsGenome Sequencing of Mouse Induced Pluripotent Stem Cells Reveals Retroelement Stability and Infrequent DNA Rearrangement during Reprogramming
Quinlan AR, Boland MJ, Leibowitz ML, Shumilina S, Pehrson SM, Baldwin KK, Hall IM. Genome Sequencing of Mouse Induced Pluripotent Stem Cells Reveals Retroelement Stability and Infrequent DNA Rearrangement during Reprogramming. Cell Stem Cell 2011, 9: 366-373. PMID: 21982236, PMCID: PMC3975295, DOI: 10.1016/j.stem.2011.07.018.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCell LineageCellular ReprogrammingChimeraDNA Copy Number VariationsFalse Negative ReactionsGene RearrangementGene SilencingGenomeGenomic InstabilityHumansInduced Pluripotent Stem CellsMiceMolecular Sequence DataMutagenesis, InsertionalOrgan SpecificityRetroelementsSequence Analysis, DNAConceptsPluripotent stem cellsClasses of SVsPaired-end DNA sequencingStem cellsGenomic structural variationMouse Induced Pluripotent Stem CellsStructural variationsDNA copy number variationsEmbryonic stem cellsMost iPSC linesMouse iPSC linesIPSC linesInduced pluripotent stem cellsCopy number variationsGenome stabilityGene-disrupting mutationsRecent microarray studiesDNA rearrangementsGenome sequencingSpontaneous mutationsMicroarray studiesDeleterious genetic mutationsNumber variationsDNA sequencingComplex rearrangements
2022
Semi-automated assembly of high-quality diploid human reference genomes
Jarvis E, Formenti G, Rhie A, Guarracino A, Yang C, Wood J, Tracey A, Thibaud-Nissen F, Vollger M, Porubsky D, Cheng H, Asri M, Logsdon G, Carnevali P, Chaisson M, Chin C, Cody S, Collins J, Ebert P, Escalona M, Fedrigo O, Fulton R, Fulton L, Garg S, Gerton J, Ghurye J, Granat A, Green R, Harvey W, Hasenfeld P, Hastie A, Haukness M, Jaeger E, Jain M, Kirsche M, Kolmogorov M, Korbel J, Koren S, Korlach J, Lee J, Li D, Lindsay T, Lucas J, Luo F, Marschall T, Mitchell M, McDaniel J, Nie F, Olsen H, Olson N, Pesout T, Potapova T, Puiu D, Regier A, Ruan J, Salzberg S, Sanders A, Schatz M, Schmitt A, Schneider V, Selvaraj S, Shafin K, Shumate A, Stitziel N, Stober C, Torrance J, Wagner J, Wang J, Wenger A, Xiao C, Zimin A, Zhang G, Wang T, Li H, Garrison E, Haussler D, Hall I, Zook J, Eichler E, Phillippy A, Paten B, Howe K, Miga K. Semi-automated assembly of high-quality diploid human reference genomes. Nature 2022, 611: 519-531. PMID: 36261518, PMCID: PMC9668749, DOI: 10.1038/s41586-022-05325-5.Peer-Reviewed Original ResearchConceptsDiploid genome assemblyGenome assemblyProtein-coding genesGlobal genetic variationCurrent human reference genomeDiploid human genomeHigh-quality assemblyAccurate long readsNon-synonymous amino acid changesHuman reference genomeAmino acid changesMost chromosomesReference assemblyReference genomeHuman genomeCentromeric regionsGenetic variationHigh diversityGenome sequencingLong readsSingle nucleotideGenomeAcid changesManual curationBiological genomes