2021
CCM3 Loss-Induced Lymphatic Defect Is Mediated by the Augmented VEGFR3-ERK1/2 Signaling
Qin L, Zhang H, Li B, Jiang Q, Lopez F, Min W, Zhou JH. CCM3 Loss-Induced Lymphatic Defect Is Mediated by the Augmented VEGFR3-ERK1/2 Signaling. Arteriosclerosis Thrombosis And Vascular Biology 2021, 41: 2943-2960. PMID: 34670407, PMCID: PMC8613000, DOI: 10.1161/atvbaha.121.316707.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosis Regulatory ProteinsCells, CulturedEndothelial CellsEndothelium, LymphaticFemaleGene DeletionHemangioma, Cavernous, Central Nervous SystemHyperplasiaMaleMAP Kinase Signaling SystemMice, Inbred StrainsModels, AnimalNF-kappa BTranslocation, GeneticVascular Endothelial Growth Factor Receptor-3ConceptsLymphatic ECsLymphatic defectsCerebral cavernous malformationsPan-endothelial cellsGrowth factor receptorTranscriptional levelTransport assaysLymphatic hyperplasiaCCM genesLymphatic dysfunctionNuclear translocationGenesFactor receptorVEGFR3ERK1/2Nuclear factorDeletionEC proliferationInhibition of VEGFR3Dependent mannerVascular endothelial growth factor receptorEndothelial growth factor receptorEC deletionAbnormal valve structureKPNA2Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model
Zhou HJ, Qin L, Jiang Q, Murray KN, Zhang H, Li B, Lin Q, Graham M, Liu X, Grutzendler J, Min W. Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model. Nature Communications 2021, 12: 504. PMID: 33495460, PMCID: PMC7835246, DOI: 10.1038/s41467-020-20774-0.Peer-Reviewed Original ResearchConceptsCerebral cavernous malformationsCCM lesionsSmooth muscle actin-positive pericytesEndothelial cell lossRegions of brainCCM pathogenesisPost-capillary venulesCerebral hemorrhagePharmacological blockadeVascular abnormalitiesEC-specific deletionCavernous malformationsMouse modelCell lossMicrovascular bedGenetic deletionLesion formationLesionsVascular dynamicsBarrier functionMicrovascular structureTwo-photon microscopyTie2PathogenesisMice
2020
Mural Cell-Specific Deletion of Cerebral Cavernous Malformation 3 in the Brain Induces Cerebral Cavernous Malformations
Wang K, Zhang H, He Y, Jiang Q, Tanaka Y, Park IH, Pober JS, Min W, Zhou HJ. Mural Cell-Specific Deletion of Cerebral Cavernous Malformation 3 in the Brain Induces Cerebral Cavernous Malformations. Arteriosclerosis Thrombosis And Vascular Biology 2020, 40: 2171-2186. PMID: 32640906, DOI: 10.1161/atvbaha.120.314586.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosis Regulatory ProteinsBrainCell CommunicationCell MovementCells, CulturedCoculture TechniquesEndothelial CellsFemaleFocal AdhesionsGene DeletionGenetic Predisposition to DiseaseHemangioma, Cavernous, Central Nervous SystemHumansMaleMembrane ProteinsMice, KnockoutMicrovesselsMyocytes, Smooth MusclePaxillinPericytesPhenotypeProtein StabilityProto-Oncogene ProteinsSignal TransductionConceptsCerebral cavernous malformationsBrain mural cellsCCM lesionsMural cellsCavernous malformationsSevere brain hemorrhageCCM pathogenesisSmooth muscle cellsWeeks of ageCell-specific deletionMural cell coverageBrain pericytesBrain hemorrhageNeonatal stageBrain vasculatureLesionsEntire brainMuscle cellsCerebral cavernous malformation 3Endothelial cellsMicePericytesSpecific deletionAdhesion formationPathogenesisBMX Represses Thrombin-PAR1–Mediated Endothelial Permeability and Vascular Leakage During Early Sepsis
Li Z, Yin M, Zhang H, Ni W, Pierce R, Zhou HJ, Min W. BMX Represses Thrombin-PAR1–Mediated Endothelial Permeability and Vascular Leakage During Early Sepsis. Circulation Research 2020, 126: 471-485. PMID: 31910739, PMCID: PMC7035171, DOI: 10.1161/circresaha.119.315769.Peer-Reviewed Original ResearchConceptsPAR1 internalizationPuncture-induced sepsisCecal ligationVascular leakageEndothelial permeabilityExpression of BmxThrombin-PAR1Early sepsisEndothelial cellsPuncture modelSignal inactivationPAR1 antagonist SCH79797Negative regulatorLung epithelial cellsTransendothelial electrical resistanceAdult stageEmbryonic stagesCultured endothelial cellsPulmonary leakageCellular analysisLung injuryPathological stimuliEndothelium dysfunctionPlatelet dysfunctionSepsis
2017
The critical role of SENP1-mediated GATA2 deSUMOylation in promoting endothelial activation in graft arteriosclerosis
Qiu C, Wang Y, Zhao H, Qin L, Shi Y, Zhu X, Song L, Zhou X, Chen J, Zhou H, Zhang H, Tellides G, Min W, Yu L. The critical role of SENP1-mediated GATA2 deSUMOylation in promoting endothelial activation in graft arteriosclerosis. Nature Communications 2017, 8: 15426. PMID: 28569748, PMCID: PMC5461500, DOI: 10.1038/ncomms15426.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArteriosclerosisCysteine EndopeptidasesDisease ProgressionDNAEndopeptidasesEndothelial CellsEndothelium, VascularGATA2 Transcription FactorHuman Umbilical Vein Endothelial CellsHumansInflammation MediatorsLeukocytesMaleMice, Inbred C57BLMice, KnockoutModels, BiologicalProtein BindingProtein StabilitySumoylationConceptsGraft arteriosclerosisEndothelial activationClinical graft rejectionConsequent endothelial dysfunctionNF-κB activityRole of SENP1Post-translational SUMOylationAllograft failureEndothelial dysfunctionGraft rejectionGraft endotheliumLeukocyte recruitmentVascular remodellingCardiovascular disordersNeointima formationNF-κBClinical researchDiminished inductionEndothelial cellsMajor causeAdhesion moleculesPotential involvementInflammationArteriosclerosisSENP1
2014
AIP1 Mediates Vascular Endothelial Cell Growth Factor Receptor-3–Dependent Angiogenic and Lymphangiogenic Responses
Zhou HJ, Chen X, Huang Q, Liu R, Zhang H, Wang Y, Jin Y, Liang X, Lu L, Xu Z, Min W. AIP1 Mediates Vascular Endothelial Cell Growth Factor Receptor-3–Dependent Angiogenic and Lymphangiogenic Responses. Arteriosclerosis Thrombosis And Vascular Biology 2014, 34: 603-615. PMID: 24407031, PMCID: PMC3952062, DOI: 10.1161/atvbaha.113.303053.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAnimalsCarrier ProteinsCells, CulturedCorneaEndocytosisEndothelial CellsEndothelium, VascularEye ProteinsGuanylate KinasesHumansLymphangiogenesisMiceMice, KnockoutMicroRNAsNeuronsRas GTPase-Activating ProteinsReceptors, NotchRecombinant ProteinsRetinal NeovascularizationRNA InterferenceRNA, Small InterferingVascular Endothelial Growth Factor CVascular Endothelial Growth Factor Receptor-2Vascular Endothelial Growth Factor Receptor-3ConceptsLymphatic endothelial cellsASK1-interacting protein-1VEGFR-3 signalingHuman lymphatic endothelial cellsVEGFR-3Vascular endothelial cell growth factor receptorEndothelial cellsReduced expressionDevelopmental lymphangiogenesisScaffold proteinAIP1 functionsGrowth factor receptorLymphangiogenic signalingNovel functionVEGFR-2 activityRNA knockdownCell growth factor receptorLymphangiogenic responseSimilar defectsFirst insightProtein 1Vascular endothelial cellsPathological angiogenesisSpecific deletionFactor receptor
2013
SOCS1 Prevents Graft Arteriosclerosis by Preserving Endothelial Cell Function
Qin L, Huang Q, Zhang H, Liu R, Tellides G, Min W, Yu L. SOCS1 Prevents Graft Arteriosclerosis by Preserving Endothelial Cell Function. Journal Of The American College Of Cardiology 2013, 63: 21-29. PMID: 23994402, PMCID: PMC3932325, DOI: 10.1016/j.jacc.2013.08.694.Peer-Reviewed Original ResearchConceptsAdhesion molecule-1Cell adhesion molecule-1Graft arteriosclerosisMolecule-1Aortic endothelial cellsEndothelial cellsEndothelial functionGA progressionNeointima formationLate cardiac allograft failureVascular cell adhesion molecule-1Intercellular adhesion molecule-1Cytokine-induced adhesion molecule expressionCardiac allograft failureNormal endothelial functionEndothelial inflammatory responseInflammatory cell infiltrationMouse aortic endothelial cellsAdhesion molecule expressionPlatelet/endothelial cell adhesion molecule-1Better vascular functionEndothelial cell adhesion molecule-1Cytokine-induced expressionEndothelial adhesion moleculesCultured aortic endothelial cells
2012
Both Internalization and AIP1 Association Are Required for Tumor Necrosis Factor Receptor 2-Mediated JNK Signaling
Ji W, Li Y, Wan T, Wang J, Zhang H, Chen H, Min W. Both Internalization and AIP1 Association Are Required for Tumor Necrosis Factor Receptor 2-Mediated JNK Signaling. Arteriosclerosis Thrombosis And Vascular Biology 2012, 32: 2271-2279. PMID: 22743059, PMCID: PMC3421067, DOI: 10.1161/atvbaha.112.253666.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisBinding SitesCells, CulturedEndothelial CellsEnzyme ActivationHuman Umbilical Vein Endothelial CellsHumansJNK Mitogen-Activated Protein KinasesMiceMice, KnockoutNF-kappa BProtein Interaction Domains and MotifsProtein TransportRas GTPase-Activating ProteinsReceptors, Tumor Necrosis Factor, Type IReceptors, Tumor Necrosis Factor, Type IISequence DeletionSignal TransductionTime FactorsTNF Receptor-Associated Factor 2TransfectionTumor Necrosis Factor-alphaConceptsJNK signalingApoptotic signalingJNK activationDomain IICaspase-dependent cell deathCell deathTNF receptor 1C-Jun N-terminal kinaseDependent cell survivalN-terminal kinaseNF-κB activationNF-κBDeletion analysisTNF responseLL motifPlasma membraneIntracellular regionCell survivalDomain IJNKSignalingDistinct rolesTNFR2 deletionProtein 1Specific deletion
2010
Functional Analyses of the Bone Marrow Kinase in the X Chromosome in Vascular Endothelial Growth Factor–Induced Lymphangiogenesis
Jones D, Xu Z, Zhang H, He Y, Kluger MS, Chen H, Min W. Functional Analyses of the Bone Marrow Kinase in the X Chromosome in Vascular Endothelial Growth Factor–Induced Lymphangiogenesis. Arteriosclerosis Thrombosis And Vascular Biology 2010, 30: 2553-2561. PMID: 20864667, PMCID: PMC3106279, DOI: 10.1161/atvbaha.110.214999.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCells, CulturedCorneaEndothelial CellsFemaleHumansLymphangiogenesisLymphatic VesselsMaleMiceMice, Inbred C57BLMice, KnockoutPhosphorylationProtein-Tyrosine KinasesRecombinant ProteinsRNA InterferenceSignal TransductionSkinTransfectionVascular Endothelial Growth Factor AVascular Endothelial Growth Factor CVascular Endothelial Growth Factor Receptor-2Vascular Endothelial Growth Factor Receptor-3ConceptsBone marrow kinaseX chromosomeLymphatic endothelial cell tube formationVascular endothelial growth factorVEGFR-3 receptorRole of BmxLymphatic endothelial cellsEndothelial cell tube formationVEGFR-2 activationCell tube formationLymphangiogenic signalingReceptor autophosphorylationFunctional analysisLymphangiogenic responseFirst insightPathological angiogenesisWild-type micePharmacological inhibitionTube formationBMXChromosomesKinaseVEGFR-3Critical roleSignalingEndothelial-Specific Transgenesis of TNFR2 Promotes Adaptive Arteriogenesis and Angiogenesis
Luo Y, Xu Z, Wan T, He Y, Jones D, Zhang H, Min W. Endothelial-Specific Transgenesis of TNFR2 Promotes Adaptive Arteriogenesis and Angiogenesis. Arteriosclerosis Thrombosis And Vascular Biology 2010, 30: 1307-1314. PMID: 20395596, PMCID: PMC2889154, DOI: 10.1161/atvbaha.110.204222.Peer-Reviewed Original ResearchMeSH KeywordsAdaptation, PhysiologicalAnimalsApoptosisCell ProliferationCell SurvivalDisease Models, AnimalEndothelial CellsFemoral ArteryHindlimbHumansIschemiaLigationMiceMice, Inbred C57BLMice, KnockoutMice, TransgenicMuscle, SkeletalNeovascularization, PhysiologicProtein-Tyrosine KinasesReceptors, Tumor Necrosis Factor, Type IIRecovery of FunctionRegional Blood FlowTime FactorsVascular Endothelial Growth Factor Receptor-2ConceptsFemoral artery ligation modelIschemic reserve capacityLimb perfusion recoveryTNFR2-deficient micePeripheral arterial diseaseCoronary artery diseaseIschemia-induced angiogenesisArtery ligation modelTNFR2 knockoutTNFR2-KOArtery diseaseActivation of TNFR2Adaptive angiogenesisArterial diseaseTg miceVascular diseaseLigation modelPerfusion recoveryAdaptive arteriogenesisVascular endotheliumLower limbsUpper limbGlobal deletionTNFR2MiceStabilization of VEGFR2 Signaling by Cerebral Cavernous Malformation 3 Is Critical for Vascular Development
He Y, Zhang H, Yu L, Gunel M, Boggon TJ, Chen H, Min W. Stabilization of VEGFR2 Signaling by Cerebral Cavernous Malformation 3 Is Critical for Vascular Development. Science Signaling 2010, 3: ra26. PMID: 20371769, PMCID: PMC3052863, DOI: 10.1126/scisignal.2000722.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCardiovascular SystemEndothelial CellsFluorescent Antibody Technique, IndirectGene DeletionGene Expression ProfilingGene Knockdown TechniquesHematopoiesisHumansImmunoblottingImmunohistochemistryImmunoprecipitationMiceReverse Transcriptase Polymerase Chain ReactionSignal TransductionVascular Endothelial Growth Factor Receptor-2ConceptsCarboxyl-terminal domainVascular endothelial growth factor receptor 2Vascular developmentHuman vascular malformationsCerebral cavernous malformation 3Early embryonic stagesCerebral cavernous malformationsEndothelial cell-specific deletionApoptotic stimuliCell-specific deletionVivo functionEmbryonic angiogenesisEndothelial growth factor receptor 2Unknown functionVEGF stimulationVEGFR2 signalingEmbryonic stagesMessenger RNASmooth muscle cellsGrowth factor receptor 2DeletionCCM3 genesFactor receptor 2Muscle cellsGenes
2009
JAK2 and SHP2 Reciprocally Regulate Tyrosine Phosphorylation and Stability of Proapoptotic Protein ASK1*
Yu L, Min W, He Y, Qin L, Zhang H, Bennett AM, Chen H. JAK2 and SHP2 Reciprocally Regulate Tyrosine Phosphorylation and Stability of Proapoptotic Protein ASK1*. Journal Of Biological Chemistry 2009, 284: 13481-13488. PMID: 19287004, PMCID: PMC2679448, DOI: 10.1074/jbc.m809740200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCell LineEndothelial CellsEnzyme StabilityHumansInterferon-gammaJanus Kinase 2MAP Kinase Kinase Kinase 5MiceMice, KnockoutMultienzyme ComplexesMutationPhosphorylationProtein Tyrosine Phosphatase, Non-Receptor Type 11Signal TransductionSuppressor of Cytokine Signaling 1 ProteinSuppressor of Cytokine Signaling ProteinsTumor Necrosis Factor-alphaConceptsTyrosine phosphorylationSubstrate-trapping mutantProtein tyrosine phosphatase 2Phosphatase-inactive mutantProteasomal inhibitor MG132ASK1-JNK signalingEndothelial cellsJAK2-specific inhibitorIFN-gamma-induced tyrosine phosphorylationASK1 degradationASK1 dephosphorylationInactive mutantMouse endothelial cellsASK1 phosphorylationPhosphatase 2Inhibitor MG132SHP2Wild typeASK1DephosphorylationMutantsPhosphorylationEnhanced associationJAK2EC apoptosisEndothelial-Specific Expression of Mitochondrial Thioredoxin Promotes Ischemia-Mediated Arteriogenesis and Angiogenesis
Dai S, He Y, Zhang H, Yu L, Wan T, Xu Z, Jones D, Chen H, Min W. Endothelial-Specific Expression of Mitochondrial Thioredoxin Promotes Ischemia-Mediated Arteriogenesis and Angiogenesis. Arteriosclerosis Thrombosis And Vascular Biology 2009, 29: 495-502. PMID: 19150880, PMCID: PMC2734510, DOI: 10.1161/atvbaha.108.180349.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisArteriesBlood Flow VelocityCell MovementDisease Models, AnimalEndothelial CellsHindlimbIschemiaJNK Mitogen-Activated Protein KinasesMaleMAP Kinase Kinase Kinase 5MiceMice, TransgenicMitochondriaMuscle, SkeletalNeovascularization, PhysiologicNitric OxideOxidative StressReactive Oxygen SpeciesRegional Blood FlowSignal TransductionThioredoxinsTime FactorsConceptsEndothelial cellsFlow recoveryFemoral artery ligation modelIschemia-mediated arteriogenesisIschemic reserve capacityLimb perfusion recoveryENOS-deficient miceENOS-KO miceNitric oxide bioavailabilityIschemia-induced angiogenesisEC apoptosisArtery ligation modelEC survivalENOS deletionNontransgenic littermatesStress-induced activationLigation modelPerfusion recoveryLower limbsUpper limbEndothelial-specific expressionSevere impairmentMajor antioxidant proteinsIschemiaMice
2008
AIP1 functions as an endogenous inhibitor of VEGFR2-mediated signaling and inflammatory angiogenesis in mice
Zhang H, He Y, Dai S, Xu Z, Luo Y, Wan T, Luo D, Jones D, Tang S, Chen H, Sessa WC, Min W. AIP1 functions as an endogenous inhibitor of VEGFR2-mediated signaling and inflammatory angiogenesis in mice. Journal Of Clinical Investigation 2008, 118: 3904-3916. PMID: 19033661, PMCID: PMC2575835, DOI: 10.1172/jci36168.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCattleCell MovementCorneal NeovascularizationDisease Models, AnimalEndothelial CellsHumansInflammationMiceMice, KnockoutNeovascularization, PathologicOrgan SpecificityPhosphatidylinositol 3-KinasesRas GTPase-Activating ProteinsSignal TransductionVascular Endothelial Growth Factor AVascular Endothelial Growth Factor Receptor-2ConceptsASK1-interacting protein-1Inflammatory angiogenesisKO miceEndogenous inhibitorInhibition of VEGFR2PI3K p85Retina neovascularizationAdaptive angiogenesisVEGF-VEGFR2 signalingRetinal angiogenesisEC migrationMiceVascular ECsVEGF responseAngiogenesisProtein 1EC apoptosisVEGFR2Late phaseVEGFMechanistic dataVascular developmentAIP1 functionsK-complexesInhibitorsAIP1 Is Critical in Transducing IRE1-mediated Endoplasmic Reticulum Stress Response*
Luo D, He Y, Zhang H, Yu L, Chen H, Xu Z, Tang S, Urano F, Min W. AIP1 Is Critical in Transducing IRE1-mediated Endoplasmic Reticulum Stress Response*. Journal Of Biological Chemistry 2008, 283: 11905-11912. PMID: 18281285, PMCID: PMC2335342, DOI: 10.1074/jbc.m710557200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosisCattleDimerizationDNA-Binding ProteinsEndoplasmic ReticulumEndothelial CellsEnzyme ActivationHumansJNK Mitogen-Activated Protein KinasesMAP Kinase Kinase Kinase 5Membrane ProteinsMiceMice, KnockoutProtein BindingProtein Serine-Threonine KinasesProtein Structure, TertiaryRas GTPase-Activating ProteinsRegulatory Factor X Transcription FactorsSignal TransductionTranscription FactorsX-Box Binding Protein 1ConceptsASK1-interacting protein-1SENP1 mediates TNF-induced desumoylation and cytoplasmic translocation of HIPK1 to enhance ASK1-dependent apoptosis
Li X, Luo Y, Yu L, Lin Y, Luo D, Zhang H, He Y, Kim YO, Kim Y, Tang S, Min W. SENP1 mediates TNF-induced desumoylation and cytoplasmic translocation of HIPK1 to enhance ASK1-dependent apoptosis. Cell Death & Differentiation 2008, 15: 739-750. PMID: 18219322, DOI: 10.1038/sj.cdd.4402303.Peer-Reviewed Original ResearchMeSH KeywordsAcetylcysteineAnimalsAntioxidantsApoptosisCarrier ProteinsCattleCells, CulturedCysteine EndopeptidasesCytoplasmEndopeptidasesEndothelial CellsFibroblastsHumansMAP Kinase Kinase Kinase 5MiceMice, KnockoutMutationProtein KinasesProtein Processing, Post-TranslationalProtein Serine-Threonine KinasesProtein TransportReactive Oxygen SpeciesRecombinant ProteinsRNA InterferenceRNA, Small InterferingSignal TransductionSmall Ubiquitin-Related Modifier ProteinsThioredoxinsTime FactorsTransfectionTumor Necrosis Factor-alphaConceptsASK1-dependent apoptosisASK1-JNK activationCytoplasmic translocationMouse embryonic fibroblast cellsNuclear translocationSUMO-specific proteasesWild-type formEmbryonic fibroblast cellsNuclear importAntioxidant protein thioredoxinHIPK1Mutant formsEndothelial cellsDeSUMOylationProtein thioredoxinSubsequent cytoplasmic translocationSENP1TranslocationCritical functionsThioredoxinFibroblast cellsApoptosisCellsActivationSUMO
2007
RIP1-mediated AIP1 Phosphorylation at a 14-3-3-binding Site Is Critical for Tumor Necrosis Factor-induced ASK1-JNK/p38 Activation*
Zhang R, Zhang H, Lin Y, Li J, Pober JS, Min W. RIP1-mediated AIP1 Phosphorylation at a 14-3-3-binding Site Is Critical for Tumor Necrosis Factor-induced ASK1-JNK/p38 Activation*. Journal Of Biological Chemistry 2007, 282: 14788-14796. PMID: 17389591, DOI: 10.1074/jbc.m701148200.Peer-Reviewed Original ResearchMeSH Keywords14-3-3 ProteinsAdaptor Proteins, Signal TransducingAmino Acid SubstitutionAnimalsApoptosisCarrier ProteinsCattleCells, CulturedEndothelial CellsEnzyme ActivationGuanylate KinasesHumansMAP Kinase Kinase 4MAP Kinase Kinase Kinase 5MAP Kinase Signaling SystemMultiprotein ComplexesMutation, MissenseP38 Mitogen-Activated Protein KinasesPhosphorylationProtein BindingProtein Processing, Post-TranslationalProteinsReceptor-Interacting Protein Serine-Threonine KinasesTNF Receptor-Associated Factor 2Tumor Necrosis Factor-alphaConceptsJNK/p38 activationP38 activationTRAF2-ASK1ASK1-JNK activationPhospho-specific antibodiesTNF treatmentEndothelial cellsComplex formationGAP domainProtein familyTerminal domainAIP1Novel memberApoptotic signalingTNF signalingRNA knockdownRIP1PhosphorylationProtein 1ASK1-interacting protein-1EC apoptosisTRAF2ASK1Similar kineticsTumor necrosis factorEndothelial-Specific Expression of Mitochondrial Thioredoxin Improves Endothelial Cell Function and Reduces Atherosclerotic Lesions
Zhang H, Luo Y, Zhang W, He Y, Dai S, Zhang R, Huang Y, Bernatchez P, Giordano FJ, Shadel G, Sessa WC, Min W. Endothelial-Specific Expression of Mitochondrial Thioredoxin Improves Endothelial Cell Function and Reduces Atherosclerotic Lesions. American Journal Of Pathology 2007, 170: 1108-1120. PMID: 17322393, PMCID: PMC1864879, DOI: 10.2353/ajpath.2007.060960.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAortaApolipoproteins EAtherosclerosisCells, CulturedEndothelial CellsFlow CytometryImmunoblottingImmunohistochemistryMiceMice, TransgenicMicroscopy, ConfocalMitochondrial ProteinsNitric OxideReactive Oxygen SpeciesReverse Transcriptase Polymerase Chain ReactionThioredoxinsVasodilationConceptsTg miceAtherosclerotic lesionsOxidative stressNitric oxide levelsEC functionDeficient mouse modelEndothelial cell functionAtherosclerosis developmentEnhanced vasodilationVascular EC functionEndothelium functionApolipoprotein EControl littermatesMouse modelOxide levelsMice showCapacity of ECEndothelial-specific expressionEndothelial cellsCritical roleReactive oxygen speciesCell functionMiceTotal antioxidantsLesions
2006
Differential Functions of Tumor Necrosis Factor Receptor 1 and 2 Signaling in Ischemia-Mediated Arteriogenesis and Angiogenesis
Luo D, Luo Y, He Y, Zhang H, Zhang R, Li X, Dobrucki WL, Sinusas AJ, Sessa WC, Min W. Differential Functions of Tumor Necrosis Factor Receptor 1 and 2 Signaling in Ischemia-Mediated Arteriogenesis and Angiogenesis. American Journal Of Pathology 2006, 169: 1886-1898. PMID: 17071609, PMCID: PMC1780200, DOI: 10.2353/ajpath.2006.060603.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsArteriesBlood VesselsCattleCell MovementCell ProliferationCell SurvivalEndothelial CellsEndothelium, VascularHindlimbHumansIschemiaMiceMice, Inbred C57BLMice, KnockoutMolecular Sequence DataNeovascularization, PathologicOrganogenesisPerfusionProtein-Tyrosine KinasesReceptors, Tumor Necrosis Factor, Type IReceptors, Tumor Necrosis Factor, Type IISignal TransductionTNF Receptor-Associated Factor 2ConceptsTNFR2 KO miceTumor necrosis factorTNFR1-KOEndothelial cellsFemoral artery ligation modelIschemia-mediated arteriogenesisIschemic reserve capacityTNFR1 knockout miceInfiltration of macrophagesTumor necrosis factor receptor 1Wild-type miceArtery ligation modelNecrosis factor receptor 1Dependent reporter gene expressionNuclear factor-kappaBEC survivalFactor receptor 1Vascular endothelial cellsActivation of TNFR1Murine endothelial cellsTNFR2-KOClinical recoveryActivation of TNFR2Limb perfusionVascular proliferationSOCS1 Inhibits Tumor Necrosis Factor-induced Activation of ASK1-JNK Inflammatory Signaling by Mediating ASK1 Degradation*
He Y, Zhang W, Zhang R, Zhang H, Min W. SOCS1 Inhibits Tumor Necrosis Factor-induced Activation of ASK1-JNK Inflammatory Signaling by Mediating ASK1 Degradation*. Journal Of Biological Chemistry 2006, 281: 5559-5566. PMID: 16407264, DOI: 10.1074/jbc.m512338200.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCattleCells, CulturedEndothelial CellsEnzyme ActivationInflammationIntracellular Signaling Peptides and ProteinsJNK Mitogen-Activated Protein KinasesMAP Kinase Kinase Kinase 5MiceMice, KnockoutRecombinant Fusion ProteinsRepressor ProteinsSignal TransductionSrc Homology DomainsSuppressor of Cytokine Signaling 1 ProteinSuppressor of Cytokine Signaling 3 ProteinSuppressor of Cytokine Signaling ProteinsTumor Necrosis Factor-alphaConceptsASK1 degradationDissociation of ASK1Member of suppressorTumor necrosis factor-induced activationEndothelial cellsActivation of JNKPhosphotyrosine bindingUndergoes ubiquitinationSH2 domainProteasomal inhibitorsASK1 activationNegative regulatorApoptotic responseASK1Cytokine signalingSOCS1 functionsASK1 expressionSOCS1Tumor necrosis factorSignalingSOCS1-deficient mice