2022
Chapter 11 Hormonal control of growth
Holt E, Lupsa B, Lee G, Bassyouni H, Peery H. Chapter 11 Hormonal control of growth. 2022, 335-379. DOI: 10.1016/b978-0-12-815844-9.00011-7.ChaptersChapter 3 Thyroid gland
Holt E, Lupsa B, Lee G, Bassyouni H, Peery H. Chapter 3 Thyroid gland. 2022, 75-99. DOI: 10.1016/b978-0-12-815844-9.00003-8.ChaptersChapter 7 The pancreatic islets
Holt E, Lupsa B, Lee G, Bassyouni H, Peery H. Chapter 7 The pancreatic islets. 2022, 203-237. DOI: 10.1016/b978-0-12-815844-9.00007-5.ChaptersChapter 14 Hormonal control of pregnancy and lactation
Holt E, Lupsa B, Lee G, Bassyouni H, Peery H. Chapter 14 Hormonal control of pregnancy and lactation. 2022, 473-527. DOI: 10.1016/b978-0-12-815844-9.00014-2.ChaptersChapter 8 Hormonal regulation of fuel metabolism
Holt E, Lupsa B, Lee G, Bassyouni H, Peery H. Chapter 8 Hormonal regulation of fuel metabolism. 2022, 239-271. DOI: 10.1016/b978-0-12-815844-9.00008-7.ChaptersChapter 12 Hormonal control of reproduction in the male
Holt E, Lupsa B, Lee G, Bassyouni H, Peery H. Chapter 12 Hormonal control of reproduction in the male. 2022, 381-431. DOI: 10.1016/b978-0-12-815844-9.00012-9.ChaptersChapter 13 Hormonal control of reproduction in the female: the menstrual cycle
Holt E, Lupsa B, Lee G, Bassyouni H, Peery H. Chapter 13 Hormonal control of reproduction in the female: the menstrual cycle. 2022, 433-472. DOI: 10.1016/b978-0-12-815844-9.00013-0.ChaptersChapter 9 Regulation of salt and water balance
Holt E, Lupsa B, Lee G, Bassyouni H, Peery H. Chapter 9 Regulation of salt and water balance. 2022, 273-302. DOI: 10.1016/b978-0-12-815844-9.00009-9.ChaptersChapter 5 Principles of hormone integration
Holt E, Lupsa B, Lee G, Bassyouni H, Peery H. Chapter 5 Principles of hormone integration. 2022, 145-161. DOI: 10.1016/b978-0-12-815844-9.00005-1.ChaptersChapter 2 Pituitary gland
Holt E, Lupsa B, Lee G, Bassyouni H, Peery H. Chapter 2 Pituitary gland. 2022, 43-73. DOI: 10.1016/b978-0-12-815844-9.00002-6.ChaptersGrowth hormoneAnterior pituitaryHypothalamic-hypophyseal portal systemInsulin-like growth factorAnterior pituitary hormonesEjection of milkHypothalamic-hypophyseal tractPituitary hormonesAnterior lobeTrophic hormonesInhibitory hormonePituitary glandPosterior pituitaryAxon endingsPortal systemHypothalamusPituitaryHormoneTypes of cellsGrowth factorConnective tissueTarget tissuesGlandAcidophile cellsLobeChapter 4 The adrenal glands
Holt E, Lupsa B, Lee G, Bassyouni H, Peery H. Chapter 4 The adrenal glands. 2022, 101-143. DOI: 10.1016/b978-0-12-815844-9.00004-x.ChaptersChapter 6 Hormones of the gastrointestinal tract
Holt E, Lupsa B, Lee G, Bassyouni H, Peery H. Chapter 6 Hormones of the gastrointestinal tract. 2022, 163-202. DOI: 10.1016/b978-0-12-815844-9.00006-3.ChaptersChapter 1 Introduction
Holt E, Lupsa B, Lee G, Bassyouni H, Peery H. Chapter 1 Introduction. 2022, 1-41. DOI: 10.1016/b978-0-12-815844-9.00001-4.ChaptersPreface
Holt E, Lupsa B, Lee G, Bassyouni H, Peery H. Preface. 2022, xiii. DOI: 10.1016/b978-0-12-815844-9.00018-x.ChaptersChapter 10 Hormonal regulation of calcium balance
Holt E, Lupsa B, Lee G, Bassyouni H, Peery H. Chapter 10 Hormonal regulation of calcium balance. 2022, 303-333. DOI: 10.1016/b978-0-12-815844-9.00010-5.Chapters
2021
Continuous Glucose Monitoring for the Internist
Lee GS, Lupsa BC. Continuous Glucose Monitoring for the Internist. Medical Clinics Of North America 2021, 105: 967-982. PMID: 34688421, DOI: 10.1016/j.mcna.2021.06.004.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsContinuous glucose monitoringContinuous glucose monitoring systemDiabetes mellitusGlucose monitoring systemGlucose monitoringGlycemic patternsType 2 diabetes mellitusType 1 diabetes mellitusTreatment regimenDiabetes careGlucose readingsHemoglobin AGlucose dataMellitusPatientsInterstitial fluidConvenient wearable devices
2020
Chapter 10: Hormonal Regulation of Calcium Balance
Lee, G.S. “Chapter 10: Hormonal Regulation of Calcium Balance.” In: Goodman’s Basic Medical Endocrinology, 5th edition. Elsevier. In Press.Books
2017
Impact of gain-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) on glucose and lipid homeostasis
Foer D, Zhu M, Cardone RL, Simpson C, Sullivan R, Nemiroff S, Lee G, Kibbey RG, Petersen KF, Insogna KL. Impact of gain-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) on glucose and lipid homeostasis. Osteoporosis International 2017, 28: 2011-2017. PMID: 28283687, PMCID: PMC6693506, DOI: 10.1007/s00198-017-3977-4.Peer-Reviewed Original ResearchMeSH KeywordsAgedBlood GlucoseCase-Control StudiesCholesterol, LDLFemaleGain of Function MutationGlucose Tolerance TestGlycated HemoglobinHomeostasisHumansIslets of LangerhansLipid MetabolismLow Density Lipoprotein Receptor-Related Protein-5MaleMiddle AgedTissue Culture TechniquesWnt Signaling PathwayConceptsLow-density lipoprotein receptor-related protein 5Insulin sensitivity indexType 2 diabetesInsulin secretionLRP5 mutationsLipid metabolismSerum LDLInsulin sensitivityLipid homeostasisGlucose metabolismAnimal modelsMean insulin sensitivity indexFunction mutationsHigh bone mass phenotypeLipoprotein receptor-related protein 5Augment insulin secretionGlucose-stimulated insulin secretionCoronary artery diseaseMajor risk factorCase-control studyImpaired insulin sensitivityHepatic lipid contentBone mass phenotypeProton magnetic resonance spectroscopyAcademic medical center
2016
“Hyperglycemic Emergency.” In: Critical Care Emergency Medicine, 2nd edition
Lee, G.S. and Honiden, S. “Hyperglycemic Emergency.” In: Critical Care Emergency Medicine, 2nd edition. Eds. David A. Farcy, William C. Chiu, John P. Marshall, Tiffany Osborn, McGraw-Hill, New York, 2016. 413-420.Books
2014
Serum levels of sclerostin, Dickkopf-1, and secreted frizzled-related protein-4 are not changed in individuals with high bone mass causing mutations in LRP5
Simpson CA, Foer D, Lee GS, Bihuniak J, Sun B, Sullivan R, Belsky J, Insogna KL. Serum levels of sclerostin, Dickkopf-1, and secreted frizzled-related protein-4 are not changed in individuals with high bone mass causing mutations in LRP5. Osteoporosis International 2014, 25: 2383-2388. PMID: 24927689, PMCID: PMC4659359, DOI: 10.1007/s00198-014-2767-5.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdultAgedBone DensityBone Morphogenetic ProteinsCase-Control StudiesFemaleGenetic MarkersGenotypeHumansIntercellular Signaling Peptides and ProteinsLow Density Lipoprotein Receptor-Related Protein-5MaleMiddle AgedMutationOsteoprotegerinProto-Oncogene ProteinsRANK LigandSex CharacteristicsWnt Signaling PathwayConceptsFrizzled-related protein 4Serum levelsWnt inhibitorsDickkopf-1Normal controlsUnrelated normal controlsHigh bone mass mutationsHigh bone mass syndromeFunction mutationsNormal age-matched controlsProtein 4Cross-sectional studyAge-matched controlsLRP5 resultSkeletal effectsEndogenous Wnt inhibitorsMass syndromeConsented volunteersUnrelated normal individualsDkk-1Different kindredsNormal individualsLRP5 signalingPatientsSclerostin