2005
Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents
Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, Neschen S, White MF, Bilz S, Sono S, Pypaert M, Shulman GI. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. Journal Of Clinical Investigation 2005, 115: 3587-3593. PMID: 16284649, PMCID: PMC1280967, DOI: 10.1172/jci25151.Peer-Reviewed Original ResearchMeSH KeywordsBiopsyBlood GlucoseBlotting, WesternBody Mass IndexBody WeightDiabetes Mellitus, Type 2DNA, MitochondrialFamily HealthFemaleGene Expression RegulationGlucose Clamp TechniqueGlucose Tolerance TestHumansHyperinsulinismImmunoprecipitationInsulinInsulin Receptor Substrate ProteinsInsulin ResistanceLipidsMaleMicroscopy, ElectronMicroscopy, Electron, TransmissionMitochondriaMusclesPhosphoproteinsPhosphorylationProtein Serine-Threonine KinasesReverse Transcriptase Polymerase Chain ReactionRNA, MessengerSerineSignal TransductionTime FactorsTranscription, GeneticTriglyceridesConceptsInsulin-resistant offspringIR offspringType 2 diabetesInsulin-stimulated muscle glucose uptakeType 2 diabetic parentsIntramyocellular lipid contentHyperinsulinemic-euglycemic clampMuscle glucose uptakeIRS-1 serine phosphorylationMuscle mitochondrial densityMitochondrial densityMuscle biopsy samplesSerine kinase cascadeInsulin-stimulated Akt activationDiabetic parentsInsulin resistanceControl subjectsBiopsy samplesGlucose uptakeLipid accumulationMitochondrial dysfunctionInsulin signalingAkt activationEarly defectsMuscle
2001
Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4
Kim J, Zisman A, Fillmore J, Peroni O, Kotani K, Perret P, Zong H, Dong J, Kahn C, Kahn B, Shulman G. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. Journal Of Clinical Investigation 2001, 108: 153-160. PMID: 11435467, PMCID: PMC353719, DOI: 10.1172/jci10294.Peer-Reviewed Original ResearchMeSH KeywordsAdipose TissueAge of OnsetAnimalsDepression, ChemicalDiabetes Mellitus, Type 2Disease Models, AnimalGlucoseGlucose Transporter Type 4HyperglycemiaInsulinInsulin Infusion SystemsInsulin ResistanceKidney TubulesLiverMaleMiceMice, KnockoutMonosaccharide Transport ProteinsMuscle ProteinsMuscle, SkeletalPhlorhizinPrediabetic StateProtein TransportConceptsDevelopment of diabetesMuscle glucose uptakeKO miceHepatic glucose productionInsulin-stimulated glucose uptakeGlucose toxicityMuscle-specific inactivationGlucose uptakeAdipose tissueInsulin-stimulated muscle glucose uptakeGlucose productionWhole-body glucose uptakeSkeletal muscle glucose uptakeAdipose tissue glucose uptakeSuppress hepatic glucose productionTissue glucose uptakeHyperinsulinemic-euglycemic clampMuscle glucose transportInsulin resistanceTransgenic miceDiabetes phenotypeInsulin actionPhloridzin treatmentInsulin's abilityDiabetes
1999
Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR
Russell R, Bergeron R, Shulman G, Young L. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. American Journal Of Physiology 1999, 277: h643-h649. PMID: 10444490, DOI: 10.1152/ajpheart.1999.277.2.h643.Peer-Reviewed Original ResearchMeSH KeywordsAminoimidazole CarboxamideAMP-Activated Protein KinasesAnimalsBiological TransportEnzyme ActivationGlucoseGlucose Transporter Type 4In Vitro TechniquesMaleMonosaccharide Transport ProteinsMultienzyme ComplexesMuscle ProteinsMyocardiumProtein Serine-Threonine KinasesRatsRats, Sprague-DawleyRibonucleotidesSarcolemmaConceptsAMPK activationGLUT-4 translocationGLUT-4Glucose uptakeProtein kinase activityActivator of AMPKActivation of AMPKInsulin-stimulated increasePI3K-independent pathwayInsulin-stimulated glucose uptakePI3K inhibitorsKinase activityAICARDeoxyglucose uptakeAMPKTranslocationIschemia-induced translocationK inhibitorsAdenine 9Myocyte sarcolemmaPathwayImmunofluorescence studiesMuscle glucose uptakeActivationCardiac myocytes