2022
Human biodistribution and radiation dosimetry of the demyelination tracer [18F]3F4AP
Brugarolas P, Wilks M, Noel J, Kaiser J, Vesper D, Ramos-Torres K, Guehl N, Macdonald-Soccorso M, Sun Y, Rice P, Yokell D, Lim R, Normandin M, El Fakhri G. Human biodistribution and radiation dosimetry of the demyelination tracer [18F]3F4AP. European Journal Of Nuclear Medicine And Molecular Imaging 2022, 50: 344-351. PMID: 36197499, PMCID: PMC9816249, DOI: 10.1007/s00259-022-05980-w.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDemyelinating DiseasesFemaleHumansMalePositron-Emission TomographyRadiometryRadiopharmaceuticalsTissue DistributionConceptsRadiation dosimetryTime-activity curvesAdverse eventsEffective doseMultiple bed positionsComprehensive metabolic panelNonhuman primatesHealthy human volunteersNo adverse eventsDynamic PET scansVoltage-gated potassiumAnimal models of neurological diseasesNonhuman primate studiesModels of neurological diseasesHuman biodistributionAverage effective doseMetabolic panelDosimetryOLINDA softwareHealthy volunteersUrinary bladderPET scansDemyelinating lesionsBed positionAnimal models
2021
Synthesis and Characterization of [18F]JNJ-46356479 as the First 18F-Labeled PET Imaging Ligand for Metabotropic Glutamate Receptor 2
Yuan G, Guehl N, Zheng B, Qu X, Moon S, Dhaynaut M, Shoup T, Afshar S, Kang H, Zhang Z, El Fakhri G, Normandin M, Brownell A. Synthesis and Characterization of [18F]JNJ-46356479 as the First 18F-Labeled PET Imaging Ligand for Metabotropic Glutamate Receptor 2. Molecular Imaging And Biology 2021, 23: 527-536. PMID: 33559035, PMCID: PMC8277681, DOI: 10.1007/s11307-021-01586-0.Peer-Reviewed Original ResearchConceptsNon-human primatesIn vivo PET imaging studiesNucleus accumbensGlutamate receptor 2PET imaging ligandsImaging ligandsParietal cortexBrain regionsPET imaging studiesPET radioligandIn vivo PET imaging experimentsVolume of distributionMGluR2C57BL/6 J micePET imaging experimentsPET studiesBrainSprague-Dawley ratsAlzheimer's diseaseBrain permeabilityPre-treatment studyImaging studiesDisordersRat studiesReversible kinetics
2020
Design, Synthesis, and Characterization of Benzimidazole Derivatives as Positron Emission Tomography Imaging Ligands for Metabotropic Glutamate Receptor 2
Yuan G, Qu X, Zheng B, Neelamegam R, Afshar S, Iyengar S, Pan C, Wang J, Kang H, Ondrechen M, Poutiainen P, Fakhri G, Zhang Z, Brownell A. Design, Synthesis, and Characterization of Benzimidazole Derivatives as Positron Emission Tomography Imaging Ligands for Metabotropic Glutamate Receptor 2. Journal Of Medicinal Chemistry 2020, 63: 12060-12072. PMID: 32981322, PMCID: PMC8629109, DOI: 10.1021/acs.jmedchem.0c01394.Peer-Reviewed Original ResearchConceptsPotential positron emission tomographyBenzimidazole derivativesPositron emission tomography imaging ligandsExcellent selectivityImaging ligandsPositive allosteric modulatorsRadiochemical yieldBinding affinityMetabotropic glutamate receptor 2C]methyl iodideMolar activityLigandDerivativesRadiochemical purityGlutamate receptor 2Brain regionsAllosteric modulatorsPositron emission tomographyC]methylationRadiochemicalIodideBrain uptakeMGluR subtypesCompoundsBinding
2019
Renal clearable nanochelators for iron overload therapy
Kang H, Han M, Xue J, Baek Y, Chang J, Hu S, Nam H, Jo M, El Fakhri G, Hutchens M, Choi H, Kim J. Renal clearable nanochelators for iron overload therapy. Nature Communications 2019, 10: 5134. PMID: 31723130, PMCID: PMC6853917, DOI: 10.1038/s41467-019-13143-z.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsDeferoxamineIron Chelating AgentsIron OverloadKidneyMaleMiceNanoparticlesTissue DistributionConceptsIron overloadIntravenous injectionDaily sc injectionsUrinary iron excretionSecondary iron overloadIron-overloaded miceAdverse side effectsIron chelatorsIron overload disordersGastrointestinal bleedingSC injectionIron excretionLiver fibrosisSide effectsKidney damageKidney failureIron overload therapyIron levelsToxic ironPharmacokinetic propertiesDeferoxamineNanochelatorKidneyExcretionInjectionReal‐Time Imaging of Vaccine Biodistribution Using Zwitterionic NIR Nanoparticles
Katagiri W, Lee J, Tétrault M, Kang H, Jeong S, Evans C, Yokomizo S, Santos S, Jones C, Hu S, Fakhri G, Tsukada K, Choi H, Kashiwagi S. Real‐Time Imaging of Vaccine Biodistribution Using Zwitterionic NIR Nanoparticles. Advanced Healthcare Materials 2019, 8: e1900035. PMID: 31165556, PMCID: PMC6687515, DOI: 10.1002/adhm.201900035.Peer-Reviewed Original ResearchConceptsNIR fluorescence imaging systemLymph nodesVaccine antigensClinical vaccine candidatesOptimization of vaccine designFluorescence imaging systemAntigen presenting cellsInduce protective immune responsesSecondary lymphoid tissuesDelivery of vaccine antigensProtective immune responsesZwitterionic NIR fluorophoreFlow cytometry analysisPresenting cellsLymphoid tissueIntradermal administrationAdverse reactionsBioconjugate vaccineImmune responseVaccine designVaccine candidatesModel vaccineCytometry analysisZwitterionic fluorophoresAntigen
2017
Synthesis and preliminary PET imaging of 11C and 18F isotopologues of the ROS1/ALK inhibitor lorlatinib
Collier T, Normandin M, Stephenson N, Livni E, Liang S, Wooten D, Esfahani S, Stabin M, Mahmood U, Chen J, Wang W, Maresca K, Waterhouse R, El Fakhri G, Richardson P, Vasdev N. Synthesis and preliminary PET imaging of 11C and 18F isotopologues of the ROS1/ALK inhibitor lorlatinib. Nature Communications 2017, 8: 15761. PMID: 28594000, PMCID: PMC5472746, DOI: 10.1038/ncomms15761.Peer-Reviewed Original ResearchMeSH KeywordsAminopyridinesAnaplastic Lymphoma KinaseAnimalsCarbon RadioisotopesChemistry Techniques, SyntheticContrast MediaFluorine RadioisotopesHumansIsotope LabelingLactamsLactams, MacrocyclicMacaca mulattaMaleMicePositron-Emission TomographyProtein-Tyrosine KinasesProto-Oncogene ProteinsPyrazolesTissue DistributionXenograft Model Antitumor AssaysConceptsAnaplastic lymphoma kinasePositron emission tomographyPositron emission tomography imagingC-ros oncogene 1Non-small cell lung cancerCell lung cancerBrain tumor lesionsOptimal therapeutic outcomesLung cancer patientsBlood-brain barrierPF-06463922Clinical trial investigatorsTumor uptakeLung cancerSmall molecule inhibitorsCancer patientsTherapeutic outcomesLorlatinibEmission tomographyDosimetry assessmentNon-human primatesTrial investigatorsBrain permeabilityEarly goalRadiolabeling strategies
2016
Pharmacokinetic Evaluation of the Tau PET Radiotracer 18F-T807 (18F-AV-1451) in Human Subjects
Wooten D, Guehl N, Verwer E, Shoup T, Yokell D, Zubcevik N, Vasdev N, Zafonte R, Johnson K, Fakhri G, Normandin M. Pharmacokinetic Evaluation of the Tau PET Radiotracer 18F-T807 (18F-AV-1451) in Human Subjects. Journal Of Nuclear Medicine 2016, 58: 484-491. PMID: 27660144, PMCID: PMC5334185, DOI: 10.2967/jnumed.115.170910.Peer-Reviewed Original ResearchConceptsDistribution volume ratioTraumatic brain injuryMetabolite-corrected arterial input functionPET imagingPlasma radioactivity concentrationsTemporal cortexDynamic PET imagesTotal volume of distributionVolume of distributionTraumatic brain injury subjectsMesial temporal cortexArterial blood samplesPosterior cingulate gyrusFocal uptakeSUV ratioHuman subjectsArterial input functionPosterior corpus callosumBolus injectionPharmacokinetic evaluationSite‐Specific In Vivo Bioorthogonal Ligation via Chemical Modulation
Koo H, Lee J, Bao K, Wu Y, Fakhri G, Henary M, Yun S, Choi H. Site‐Specific In Vivo Bioorthogonal Ligation via Chemical Modulation. Advanced Healthcare Materials 2016, 5: 2510-2516. PMID: 27568818, PMCID: PMC5541365, DOI: 10.1002/adhm.201600574.Peer-Reviewed Original ResearchConceptsClick chemistryClick moietyEfficiency of click chemistryLow reaction efficiencyIn vivo click chemistryReaction efficiencyChemical structureBioorthogonal ligationMoietyChemistryBioorthogonal click chemistryNear-infrared fluorophoreChemical modulatorsSurface chargeTetrazinePharmacokinetic barriersLipophilicityControlled pharmacokineticsFluorophoresTissue-Specific Near-Infrared Fluorescence Imaging
Owens E, Henary M, Fakhri G, Choi H. Tissue-Specific Near-Infrared Fluorescence Imaging. Accounts Of Chemical Research 2016, 49: 1731-1740. PMID: 27564418, PMCID: PMC5776714, DOI: 10.1021/acs.accounts.6b00239.Peer-Reviewed Original ResearchMeSH KeywordsContrast MediaFluorescenceFluorescent DyesHumansInfrared RaysNanoconjugatesNeoplasmsTissue DistributionConceptsSingle-photon emission computed tomographyPositron emission tomographyVital tissuesReal-time intraoperative navigationReal-time image guidanceContrast agentsTargeted NIR fluorophoresEmission computed tomographyTissue-specific contrast agentsEffective imaging agentsTissue-specific targetingReal-time delineationIntraoperative successTargeted therapyImage guidanceTumor tissuesEPR effectIntraoperative navigationSurgical fieldClinical imaging technologyDiagnostic utilityClinical useEmission tomographySurgical spaceTarget tissues
2015
Heat‐Induced Radiolabeling of Nanoparticles for Monocyte Tracking by PET
Normandin M, Yuan H, Wilks M, Chen H, Kinsella J, Cho H, Guehl N, Absi‐Halabi N, Hosseini S, Fakhri G, Sosnovik D, Josephson L. Heat‐Induced Radiolabeling of Nanoparticles for Monocyte Tracking by PET. Angewandte Chemie International Edition 2015, 54: 13002-13006. PMID: 26368132, PMCID: PMC4754124, DOI: 10.1002/anie.201505525.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsHot TemperatureMetal NanoparticlesMiceMonocytesPositron-Emission TomographyRadioisotopesRadiopharmaceuticalsTissue DistributionZirconiumConceptsPositron emission tomographyRadiolabelling of nanoparticlesStandardized uptake valueNP pharmacokineticsSlow uptake processUptake valueLymph nodesCirculating monocytesMonocyte traffickingIV injectionImmune responseBlood clearanceEmission tomographyHepatic uptakeMonocytesPharmacokineticsLymphUptake processCytometry
2013
Matched Signal Detection on Graphs: Theory and Application to Brain Network Classification
Hu C, Cheng L, Sepulcre J, El Fakhri G, Lu Y, Li Q. Matched Signal Detection on Graphs: Theory and Application to Brain Network Classification. Lecture Notes In Computer Science 2013, 23: 1-12. PMID: 24683953, DOI: 10.1007/978-3-642-38868-2_1.Peer-Reviewed Original ResearchMeSH KeywordsAlgorithmsAlzheimer DiseaseAniline CompoundsBenzothiazolesBrainBrain MappingConnectomeHumansImage EnhancementImage Interpretation, Computer-AssistedNerve NetNeural PathwaysPattern Recognition, AutomatedPositron-Emission TomographyReproducibility of ResultsSensitivity and SpecificityThiazolesTissue DistributionConceptsBrain network classificationNetwork classification problemWeighted energy detectorPrinciple component analysisSub-manifold structureTraditional principle component analysisSubspace detectionTraining dataEnergy detectorGraph structureProblem of Alzheimer's diseaseGraph LaplacianNetwork classificationNoise varianceLevel of smoothnessWeighted graphSignal detectionIntrinsic structureSignal modelGraphSubspaceIsing modelNoiseSignal variationsComponent analysis
2000
Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT.
El Fakhri G, Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. Journal Of Nuclear Medicine 2000, 41: 1400-8. PMID: 10945534.Peer-Reviewed Original ResearchConceptsDepth-dependent collimator responseSpatial resolution correctionCollimator responseFinite spatial resolutionBull's-eye mapCardiac SPECTActivity quantitationAttenuation correctionScatter correctionResolution correctionSpatial resolutionCollimator response correctionsSignal-to-noise ratioFrequency-distance principleImpact of scatteringLeft ventricleMonte Carlo simulationsCardiac phantomScatteringCarlo simulationsLV cavityAbsolute quantitationImproved contrastLV regionsProcessing scheme