2006
Monte Carlo-based compensation for patient scatter, detector scatter, and crosstalk contamination in In-111 SPECT imaging
Moore S, Ouyang J, Park M, Fakhri G. Monte Carlo-based compensation for patient scatter, detector scatter, and crosstalk contamination in In-111 SPECT imaging. Nuclear Instruments And Methods In Physics Research Section A Accelerators Spectrometers Detectors And Associated Equipment 2006, 569: 472-476. DOI: 10.1016/j.nima.2006.08.079.Peer-Reviewed Original ResearchScatter projectionsPatient scatterDetector scatterOrgan activity estimatesPhoton interaction pointIterative reconstruction algorithmDetector effectsEnergy binsReconstruction algorithmDelta scatteringTorso phantomPoint spread functionSegmented CT scanInteraction pointOSEM reconstructionNumerical phantomDetectorScatteringScattering mapSpherical tumorSpread functionImage noisePhantomActivity concentrationsActivity estimation
2003
The Effects of Compensation for Scatter, Lead X-Rays, and High-Energy Contamination on Tumor Detectability and Activity Estimation in Ga-67 Imaging
Fakhri G, Kijewski M, Maksud P, Moore S. The Effects of Compensation for Scatter, Lead X-Rays, and High-Energy Contamination on Tumor Detectability and Activity Estimation in Ga-67 Imaging. IEEE Transactions On Nuclear Science 2003, 50: 439. DOI: 10.1109/tns.2003.812446.Peer-Reviewed Original ResearchLead X-raysHigh-energy contaminationPresence of scatteringOptimal energy windowSignal-to-noise ratioAnthropomorphic torso phantomHigh-energy photonsMonte Carlo programGa-67 imagingSpherical tumorCompton scatteringPhoton interactionsEnergy windowScattered photonsEnergy photonsPhotopeak windowTorso phantomActivity estimationHigh energyFactors affecting image qualityX-rayScatter correctionPhotopeakGa-67Photons
2001
Comparative Assessment of Energy-Based Methods of Compensating for Scatter and Lead X-Rays in Ga-67 SPECT Imaging
Moore S, Fakhri G, Maksud P. Comparative Assessment of Energy-Based Methods of Compensating for Scatter and Lead X-Rays in Ga-67 SPECT Imaging. 2001, 4: 2197-2198. DOI: 10.1109/nssmic.2001.1009260.Peer-Reviewed Original ResearchLead X-raysGa-67Energy windowArtificial neural networkGa-67 SPECT imagingSPECT imagesHigh-energy contaminationGa-67 SPECTPoisson noise realizationsActivity estimation taskTumor activity concentrationAnthropomorphic phantomEvaluable tumorsGS methodTumorMean square errorData setsOrgan uptakeProjection imagesLymphoma studiesNeural networkPixel valuesX-raySpherical tumorNoise realizations