2017
Feasibility study of using fall‐off gradients of early and late PET scans for proton range verification
Cho J, Grogg K, Min C, Zhu X, Paganetti H, Lee H, Fakhri G. Feasibility study of using fall‐off gradients of early and late PET scans for proton range verification. Medical Physics 2017, 44: 1734-1746. PMID: 28273345, PMCID: PMC5462437, DOI: 10.1002/mp.12191.Peer-Reviewed Original ResearchConceptsProton range verificationProton rangeMonte Carlo simulationsRange verificationFall-offIn-room positron emission tomographyCarlo simulationsResidual proton rangeDose fall-offPostirradiation delayPositron emission tomography imagingSOBP beamProton beamPositron emission tomographyPositron emission tomography scanPhantom studyIn-roomFunction of depthPhantomProtonOff-setMonteAcquisition timeBeamPositron emission tomography signal
2014
A Recommendation on How to Analyze In-Room PET for In Vivo Proton Range Verification Using a Distal PET Surface Method
Min C, Zhu X, Grogg K, Fakhri G, Winey B, Paganetti H. A Recommendation on How to Analyze In-Room PET for In Vivo Proton Range Verification Using a Distal PET Surface Method. Technology In Cancer Research & Treatment 2014, 14: 320-325. PMID: 25246517, PMCID: PMC4898041, DOI: 10.1177/1533034614547457.Peer-Reviewed Original ResearchConceptsIn vivo range verificationIn-room positron emission tomographyRange verificationBeam passageIn vivo proton range verificationIn-roomIn-room PET scannerPositron emission tomography activityProton beam rangeProton range verificationSingle-field treatmentsProton beam deliveryAverage range differencesBeam rangeBeam deliveryPET scannerRoot-mean-square deviationPositron emission tomographyBeamRange differencesLevel surfaceActive lineActivity levelsLocal variationsTreatment courseOC-0268: Uncertainties in PET-based range verification of pristine and spread-out Bragg peaks of clinical proton therapy
Liebl J, Testa M, Lu H, Winey B, Grogg K, Zhu X, Fakhri G, Paganetti H. OC-0268: Uncertainties in PET-based range verification of pristine and spread-out Bragg peaks of clinical proton therapy. Radiotherapy And Oncology 2014, 111: s103. DOI: 10.1016/s0167-8140(15)30373-x.Peer-Reviewed Original Research
2013
Feasibility of Using Distal Endpoints for In-Room PET Range Verification of Proton Therapy
Grogg K, Zhu X, Min C, Winey B, Bortfeld T, Paganetti H, Shih H, Fakhri G. Feasibility of Using Distal Endpoints for In-Room PET Range Verification of Proton Therapy. IEEE Transactions On Nuclear Science 2013, 60: 3290-3297. DOI: 10.1109/tns.2013.2278140.Peer-Reviewed Original ResearchPET distributionsNuclear reactionsProton therapyMC-PETSimulated positron emission tomographyIn-roomMonte CarloPET resolutionPositron emission tomographyRange verificationBiological washoutDose depthThreshold energyDose deliveryCross sectionPlanned doseMC simulationsIndividual beamsSimPETOne-dimensional profilesRadiological decayBeamDistal endpointsProtonNative nucleiFeasibility of using distal endpoints for In-room PET Range Verification of Proton Therapy
Grogg K, Zhu X, Min C, Winey B, Bortfeld T, Paganetti H, Shih H, El Fakhri G. Feasibility of using distal endpoints for In-room PET Range Verification of Proton Therapy. IEEE Transactions On Nuclear Science 2013, 60: 3890-3894. PMID: 24464031, PMCID: PMC3900284, DOI: 10.1109/nssmic.2012.6551892.Peer-Reviewed Original ResearchPET distributionsNuclear reactionsProton therapyMC-PETSimulated positron emission tomographyMonte CarloPET resolutionPositron emission tomographyRange verificationBiological washoutDose depthThreshold energyDose deliveryCross sectionPlanned doseMC simulationsIndividual beamsSimPETOne-dimensional profilesIn-roomRadiological decayBeamDistal endpointsProtonNative nucleiDetermination of elemental tissue composition following proton treatment using positron emission tomography
Cho J, Ibbott G, Gillin M, Gonzalez-Lepera C, Min C, Zhu X, Fakhri G, Paganetti H, Mawlawi O. Determination of elemental tissue composition following proton treatment using positron emission tomography. Physics In Medicine And Biology 2013, 58: 3815-3835. PMID: 23681070, PMCID: PMC3763743, DOI: 10.1088/0031-9155/58/11/3815.Peer-Reviewed Original ResearchConceptsIn-room PET scannerProton treatmentSOBP beamPET scannerMonte Carlo simulationsTissue elemental compositionComposite decay curvePristine Bragg peakProton treatment planningIn-roomElemental tissue compositionCarlo simulationsDecay curvesRange verificationMonoenergetic beamsBeam rangeProton dosePhantom sectionsEmitted positronsPositron emission tomographyProton therapyBragg peakPhantom compositionDelivered dosePositron emission tomography imaging
2011
Monitoring proton radiation therapy with in-room PET imaging
Zhu X, España S, Daartz J, Liebsch N, Ouyang J, Paganetti H, Bortfeld T, Fakhri G. Monitoring proton radiation therapy with in-room PET imaging. Physics In Medicine And Biology 2011, 56: 4041-4057. PMID: 21677366, PMCID: PMC3141290, DOI: 10.1088/0031-9155/56/13/019.Peer-Reviewed Original ResearchConceptsIn-room positron emission tomographyIn-roomProton therapy treatment roomPositron emission tomography systemProton range verificationSoft tissue-equivalent materialMonte Carlo predictionsTissue-equivalent materialsPositron emission tomography acquisition timesProton radiation therapyPositron emission tomographyBiological washoutRange verificationProton therapyList-modeActivity distribution patternsPhantom studyTreatment roomPET acquisitionSoft tissue regionsIn vivo verificationDeep-siteOff-line modalityPositron emission tomography dataAdenoid cystic carcinomaTH‐C‐BRB‐04: Reliability of Proton‐Nuclear Interaction Cross Section Data to Predict Proton‐Induced PET Images in Proton Therapy
España S, Zhu X, Daartz J, Fakhri G, Bortfeld T, Paganetti H. TH‐C‐BRB‐04: Reliability of Proton‐Nuclear Interaction Cross Section Data to Predict Proton‐Induced PET Images in Proton Therapy. Medical Physics 2011, 38: 3853-3854. DOI: 10.1118/1.3613509.Peer-Reviewed Original ResearchCross section valuesCross section dataProton beamSection valuesIn vivo range verification methodsReaction channelsSection dataMonte Carlo codeTissue-equivalent materialsHigh-resolution PET scannerMeasured PET imagesRange verificationCross sectional DataPET imagingProton therapyIsotope productionPET scannerPET isotopesActivity distributionTheoretical valuesPhantomProtonBeamCrossField irradiation
2010
SU‐GG‐J‐149: Feasibility of In‐Room PET Imaging for in Vivo Proton Beam Range Verification
España S, Zhu X, Daartz J, Liebsch N, Fakhri G, Bortfeld T, Paganetti H. SU‐GG‐J‐149: Feasibility of In‐Room PET Imaging for in Vivo Proton Beam Range Verification. Medical Physics 2010, 37: 3180-3180. DOI: 10.1118/1.3468372.Peer-Reviewed Original ResearchRange verificationIn-roomProton therapyIn vivo range verificationProton beam range verificationPassive scattering proton therapyBeam range verificationIn-room measurementsOff-line protocolsFalloff positionsBiological washoutTreatment couchCount ratePET imagingTreatment positionPET scannerAttenuation correctionTreatment roomPET scansCo-registration accuracyCT numbersCalculated uncertaintiesPatient studiesWashout modelTreatment planning
2009
Improved MAGIC gel for higher sensitivity and elemental tissue equivalent 3D dosimetry
Zhu X, Reese T, Crowley E, Fakhri G. Improved MAGIC gel for higher sensitivity and elemental tissue equivalent 3D dosimetry. Medical Physics 2009, 37: 183-188. PMID: 20175480, PMCID: PMC2801736, DOI: 10.1118/1.3260844.Peer-Reviewed Original ResearchConceptsMAGIC gelTissue equivalentsGel dosimeterRange verificationNuclear reactionsDosimetry applicationsProton beam therapyPhantom materialTime-activity measurementsDosimetry purposesTransverse relaxation rateRelaxation rateBeam therapyDose-response curveSlopes of dose-response curvesGel formulationMAGICDose responseMelting pointSoft tissueDosimetersPhantomTime-activityProtonGlucoseSU‐FF‐J‐129: In‐Room Proton Range Verification Using Mobile NeuroPET ‐ Feasibility Study
Knopf A, Zhu X, Parodi K, Paganetti H, Bortfeld T, Fakhri G. SU‐FF‐J‐129: In‐Room Proton Range Verification Using Mobile NeuroPET ‐ Feasibility Study. Medical Physics 2009, 36: 2506-2506. DOI: 10.1118/1.3181421.Peer-Reviewed Original ResearchProton range verificationRange verificationPET/CT scannerCommercial PET/CT scannersWater equivalent rangePositron emission tomographyBiological washoutPMMA phantomProton fieldsProton beamActivity depth profilesProton treatmentPhantom studyTreatment roomIn-roomPositron emission tomography scanPositron emission tomography dataPatient repositioningPhantomPositron emission tomography imagingProtonDepth profilesPET/CT imagingRadiation treatmentTotal dose