2024
Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization
Liu X, Marin T, Eslahi S, Tiss A, Chemli Y, Johson K, Fakhri G, Ouyang J. Subject-aware PET Denoising with Contrastive Adversarial Domain Generalization. 2011 IEEE Nuclear Science Symposium Conference Record 2024, 00: 1-1. PMID: 39445307, PMCID: PMC11497478, DOI: 10.1109/nss/mic/rtsd57108.2024.10656150.Peer-Reviewed Original ResearchDomain generalizationDenoising performanceDenoising moduleDeep learningSubject-independent mannerSubject-invariant featuresSuperior denoising performanceAdversarial learning frameworkSubject-related informationConventional UNetBottleneck featuresTrustworthy systemsLearning frameworkDL modelsDL model performanceDenoisingNoise realizationsNegative samplesList-mode dataImage volumesModel performancePerformancePerformance of positron emission tomographyUNetFraction of events
2022
Automation of generative adversarial network-based synthetic data-augmentation for maximizing the diagnostic performance with paranasal imaging
Kong H, Kim J, Moon H, Park H, Kim J, Lim R, Woo J, Fakhri G, Kim D, Kim S. Automation of generative adversarial network-based synthetic data-augmentation for maximizing the diagnostic performance with paranasal imaging. Scientific Reports 2022, 12: 18118. PMID: 36302815, PMCID: PMC9613909, DOI: 10.1038/s41598-022-22222-z.Peer-Reviewed Original ResearchConceptsSynthetic data augmentationData augmentationLack of training dataConventional data augmentationDeep learning methodsTraining dataLearning methodsPipeline approachAlgorithm trainingGraphical dataAutomationWaters' view radiographsModel performanceAutomated pipelinePerformancePerformance parametersAlgorithmDatasetAugmentationDataMethodPipelineRulesIndustrial workers