2021
Detecting lumbar lesions in 99mTc‐MDP SPECT by deep learning: Comparison with physicians
Petibon Y, Fahey F, Cao X, Levin Z, Sexton‐Stallone B, Falone A, Zukotynski K, Kwatra N, Lim R, Bar‐Sever Z, Chemli Y, Treves S, Fakhri G, Ouyang J. Detecting lumbar lesions in 99mTc‐MDP SPECT by deep learning: Comparison with physicians. Medical Physics 2021, 48: 4249-4261. PMID: 34101855, DOI: 10.1002/mp.15033.Peer-Reviewed Original ResearchConceptsSingle-photon emission computed tomographyLow back painLumbar lesionsPediatric patientsTc-MDPEvaluate low back painCause of low back painTc-MDP scanLesion-presentEmission computed tomographyConvolutional neural networkClinical likelihoodBack painInterreader variabilityDeep convolutional neural networkLumbar locationLesionsStress lesionsFocal lesionsDeep learningPatientsLumbar stressPhysiciansDL systemsLROC studies
2020
Non-Invasive Photoacoustic Imaging of In Vivo Mice with Erythrocyte Derived Optical Nanoparticles to Detect CAD/MI
Liu Y, Hanley T, Chen H, Long S, Gambhir S, Cheng Z, Wu J, Fakhri G, Anvari B, Zaman R. Non-Invasive Photoacoustic Imaging of In Vivo Mice with Erythrocyte Derived Optical Nanoparticles to Detect CAD/MI. Scientific Reports 2020, 10: 5983. PMID: 32249814, PMCID: PMC7136251, DOI: 10.1038/s41598-020-62868-1.Peer-Reviewed Original ResearchConceptsCoronary artery diseaseMyocardial-infarctionTail vein 1 hourIndocyanine greenWeeks old male C57BL/6 miceLeft anterior descending (LADAnterior descending (LADMale C57BL/6 miceAtherosclerotic lesionsCoronary artery ligationTen-week-old male C57BL/6 miceAtherosclerotic plaquesC57BL/6 miceNon-invasiveArtery ligationInflammatory cellsPortal tractsArtery diseaseFluorescence in vivo imagingParenchymal necrosisCoronary arteryClinical detectionPathological changesContrast agentsLesions
2011
Improvement in Lesion Detection with Whole-Body Oncologic Time-of-Flight PET
Fakhri G, Surti S, Trott C, Scheuermann J, Karp J. Improvement in Lesion Detection with Whole-Body Oncologic Time-of-Flight PET. Journal Of Nuclear Medicine 2011, 52: 347-353. PMID: 21321265, PMCID: PMC3088884, DOI: 10.2967/jnumed.110.080382.Peer-Reviewed Original ResearchConceptsTime-of-flight PETTime-of-flightTOF-PETTime-of-flight reconstructionBody mass indexList-mode dataNon-TOF PETObserver signal-to-noise ratioOrdered-subset expectation maximizationMass indexNon-TOFLesion detectionLesion detection performanceSpherical lesionsFunction of body mass indexSignal-to-noise ratioScan timePatient studiesLesion visibilityArtificial lesionsLiver lesionsPatientsLesionsLesion locationLow lesions
2008
SU‐GG‐I‐74: New IAEA Document On Acceptance Testing, Quality Assurance and Quality Control for PET and PET/CT Systems
Fakhri G, Fulton R, Gray J, Marengo M, Zimmerman B, Dondi M, McLean I, Palm S. SU‐GG‐I‐74: New IAEA Document On Acceptance Testing, Quality Assurance and Quality Control for PET and PET/CT Systems. Medical Physics 2008, 35: 2659-2659. DOI: 10.1118/1.2961472.Peer-Reviewed Original ResearchPET/CT scannerTime-of-flight systemDetector materialPET/CTPET/CT unitComputed tomographyPET indicatorPET/CT systemCT componentPET technologyCT dataNatural radioactivityLesion detectionRadioactivity concentrationPETQuality assuranceDefinition of applicationsIAEAIAEA documentsGuidelinesAcceptance testsReference valuesScannerLesionsDetector
2006
Optimizing Acquisition Parameters in TOF PET Scanners
Surti S, El-Fakhri G, Karp J. Optimizing Acquisition Parameters in TOF PET Scanners. 2006, 4: 2354-2359. DOI: 10.1109/nssmic.2006.354386.Peer-Reviewed Original ResearchNoise equivalent countCho SNRNon-TOF scannerScan timePET image qualityPatient dosageTime-of-flightSingles ratesOptimal acquisition parametersPET scannerTOF scannerDiameter cylinderIncreasing scan timeImage qualityReduce scan timeMeasure of signal-to-noise ratioSignal-to-noise ratioSpatial resolutionSNRAcquisition parametersLesion detectionLesionsTOFCylinderIncreased activity
2003
Evaluation of a Monte Carlo Scatter Correction in Clinical 3D PET
Holdsworth C, Badawi R, Santos P, Van den Abbeele A, Hoffman E, Fakhri G. Evaluation of a Monte Carlo Scatter Correction in Clinical 3D PET. 2003, 4: 2540-2544. DOI: 10.1109/nssmic.2003.1352408.Peer-Reviewed Original ResearchScatter correctionUncorrected imagesPET imagingChannelized Hotelling observerHotelling observerPatient dataPatient imagesQuantitative accuracyLesion detection sensitivityPatient sizePhantomLesion sensitivityPatientsMonteLesionsLesion detectionCorrectionROI analysisIntensity varianceDetection sensitivityPETScatteringAverage absolute bias
2002
Impact of Acquisition Geometry and Patient Habitus on Lesion Detectability in Whole-Body FDG-PET: A Channelized Hotelling Observer Study
Fakhri G, Holdsworth C, Badawi R, Santos P, Moore S, Van den Abbeele A, Kijewski M. Impact of Acquisition Geometry and Patient Habitus on Lesion Detectability in Whole-Body FDG-PET: A Channelized Hotelling Observer Study. 2002, 3: 1402-1405. DOI: 10.1109/nssmic.2002.1239583.Peer-Reviewed Original ResearchBed positionChannelized Hotelling observer studyFDG-PET studiesAttenuation mapAcquisition modeMarginal detectionFDG-PETLesion detectionWhole-body FDG-PETHotelling observerScaling 2DTypical sizePatient sizeHours post-injectionPatient habitusAnatomical backgroundWhole bodyLesion sizeObservational studyPatientsLesionsLesion siteModePost-injectionAcquisition geometry