Featured Publications
Smoking Alters Inflammation and Skeletal Stem and Progenitor Cell Activity During Fracture Healing in Different Murine Strains
Hao Z, Li J, Li B, Alder KD, Cahill SV, Munger AM, Lee I, Kwon H, Back J, Xu S, Kang M, Lee FY. Smoking Alters Inflammation and Skeletal Stem and Progenitor Cell Activity During Fracture Healing in Different Murine Strains. Journal Of Bone And Mineral Research 2020, 36: 186-198. PMID: 32866293, PMCID: PMC9057220, DOI: 10.1002/jbmr.4175.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsFracture HealingInflammationMiceMice, Inbred C57BLSmokingStem CellsX-Ray MicrotomographyConceptsCigarette smoke exposureCigarette smokingFracture healingSmoke exposureMurine modelMolecular alterationsBALB/cJ miceBiomechanical testingPro-inflammatory mediatorsCytokine/chemokine analysisImpaired fracture healingMultiplex cytokine/chemokine analysisInitial inflammatory responseFracture healing capacityBALB/cJProgenitor cell activitySmoking miceTransverse femoral osteotomyFemoral osteotomyImmune cellsChemokine analysisInflammatory responseFracture hematomaHigh riskMurine strains
2017
Tendon stem/progenitor cells regulate inflammation in tendon healing via JNK and STAT3 signaling
Tarafder S, Chen E, Jun Y, Kao K, Sim KH, Back J, Lee FY, Lee CH. Tendon stem/progenitor cells regulate inflammation in tendon healing via JNK and STAT3 signaling. The FASEB Journal 2017, 31: 3991-3998. PMID: 28533328, PMCID: PMC5572690, DOI: 10.1096/fj.201700071r.Peer-Reviewed Original ResearchConceptsConnective tissue growth factorTendon stem/progenitor cellsIL-10 expressionStem/progenitor cellsIL-10TIMP-3 expressionTendon healingIL-1βProgenitor cellsTendon cellsElevated IL-10 expressionAnti-inflammatory IL-10Number of iNOSRat patellar tendonAnti-inflammatory roleAcute tendon injuryIL-6 expressionRegulation of inflammationTissue growth factorMMP-3 expressionNumber of CD146Improved tendon healingDifferent anatomic locationsWestern blot analysisPromising regenerative potential
2011
Actin and ERK1/2-CEBPβ signaling mediates phagocytosis-induced innate immune response of osteoprogenitor cells
Lee HG, Minematsu H, Kim KO, Aydemir A, Shin MJ, Nizami SA, Chung KJ, Hsu AC, Jacobs CR, Lee FY. Actin and ERK1/2-CEBPβ signaling mediates phagocytosis-induced innate immune response of osteoprogenitor cells. Biomaterials 2011, 32: 9197-9206. PMID: 21899882, PMCID: PMC3193180, DOI: 10.1016/j.biomaterials.2011.08.059.Peer-Reviewed Original ResearchMeSH KeywordsActinsAdhesivenessAnimalsBenzimidazolesBone and BonesCCAAT-Enhancer-Binding Protein-betaCyclooxygenase 2Cytochalasin DExtracellular Signal-Regulated MAP KinasesGene Expression RegulationHumansImmunity, InnateInflammationInterleukin-6MAP Kinase Signaling SystemMiceModels, BiologicalOsteogenesisOsteolysisPhagocytosisProtein Kinase InhibitorsSignal TransductionSkullStem CellsTime FactorsTitaniumConceptsInflammatory osteolysisInflammatory responseMacrophage-mediated inflammatory responsesKey inflammatory pathwaysSuitable therapeutic targetInflammatory gene expressionInnate immune responseOsteoprogenitor cellsInflammatory cascadeInflammatory pathwaysImmune responseTherapeutic targetHost bone-implant interfaceAZD6244 treatmentIntracellular mechanismsBone-implant interfaceBone formationCellular mechanismsERK pathwayInflammationΒ pathwayOsteoclastogenesisOsteolysisIntracellular signalingImplant osteointegration
2008
What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles?
Tuan RS, Lee FY, T Konttinen Y, Wilkinson JM, Smith RL. What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles? Journal Of The American Academy Of Orthopaedic Surgeons 2008, 16 Suppl 1: s42-8. PMID: 18612013, PMCID: PMC2714366, DOI: 10.5435/00124635-200800001-00010.Peer-Reviewed Original ResearchMeSH KeywordsBasic Helix-Loop-Helix Transcription FactorsBiocompatible MaterialsBone ResorptionDinoprostoneEndothelial CellsFibroblastsForeign-Body ReactionHumansInterleukin-1Interleukin-6Interleukin-8Joint ProsthesisMacrophage Colony-Stimulating FactorOsteoclastsOsteogenesisProsthesis FailureRANK LigandStem CellsT-LymphocytesTumor Necrosis Factor-alphaConceptsBone lossTNF-alphaIL-1Inflammatory bone lossPro-osteoclastogenic cytokinesGene functionHost inflammatory responsePeriprosthetic bone lossBone marrow-derived mesenchymal stem cellsMarrow-derived mesenchymal stem cellsGenetic variationBasic science dataMolecular mechanismsMesenchymal stem cellsMechanism of actionPeriprosthetic inflammationIL-6IL-8M-SCFInflammatory responseT cellsStem cellsAltered susceptibilityBiologic effectsOsteoprogenitor cells
2005
Recruitment of osteoclast precursors by stromal cell derived factor‐1 (SDF‐1) in giant cell tumor of bone
Liao TS, Yurgelun MB, Chang S, Zhang H, Murakami K, Blaine TA, Parisian M, Kim W, Winchester RJ, Lee F. Recruitment of osteoclast precursors by stromal cell derived factor‐1 (SDF‐1) in giant cell tumor of bone. Journal Of Orthopaedic Research® 2005, 23: 203-209. PMID: 15607894, DOI: 10.1016/j.orthres.2004.06.018.Peer-Reviewed Original ResearchConceptsGiant cell tumorSDF-1Osteoclast precursorsStromal cellsCell tumorsSDF-1 gene expressionTumor-induced osteoclastogenesisSDF-1 proteinRecombinant SDF-1Neoplastic stromal cellsReal-time RT-PCRHematopoetic stem cellsOsteoclast precursor cellsTime RT-PCRBone lesionsStudy of osteoclastogenesisChemotactic concentrationsChemoattractant factorGCT tissuesMonocyte/Specific receptorsRT-PCRDisease modelsPrecursor cellsFactor 1