2023
Neonatal loss of FGFR2 in astroglial cells affects locomotion, sociability, working memory, and glia-neuron interactions in mice
Stevens H, Scuderi S, Collica S, Tomasi S, Horvath T, Vaccarino F. Neonatal loss of FGFR2 in astroglial cells affects locomotion, sociability, working memory, and glia-neuron interactions in mice. Translational Psychiatry 2023, 13: 89. PMID: 36906620, PMCID: PMC10008554, DOI: 10.1038/s41398-023-02372-y.Peer-Reviewed Original ResearchConceptsFibroblast growth factor receptor 2Anxiety-like behaviorAttention deficit hyperactivity disorderAstroglial cellsGrowth factor receptor 2Reduced anxiety-like behaviorGlia-neuron interactionsAstroglial cell functionEarly postnatal periodFactor receptor 2Early postnatal lossPostnatal mouse brainWeeks of ageDeficit hyperactivity disorderGlial cellsGlutamine synthetase expressionBehavioral deficitsPostnatal periodReceptor 2Floxed miceHGFAP-CreMouse brainNeonatal lossPostnatal astrogliaPostnatal loss
2014
Fgfr1 Inactivation in the Mouse Telencephalon Results in Impaired Maturation of Interneurons Expressing Parvalbumin
Smith KM, Maragnoli ME, Phull PM, Tran KM, Choubey L, Vaccarino FM. Fgfr1 Inactivation in the Mouse Telencephalon Results in Impaired Maturation of Interneurons Expressing Parvalbumin. PLOS ONE 2014, 9: e103696. PMID: 25116473, PMCID: PMC4130531, DOI: 10.1371/journal.pone.0103696.Peer-Reviewed Original ResearchConceptsGanglionic eminenceSoma sizeCortical interneuronsAstrocytes of miceCortex of adultCortical GABAergic neuronsParvalbumin-positive cortical interneuronsRadial glial cellsSmaller soma sizeMedial ganglionic eminenceFibroblast growth factorDeficient astrocytesLocomotor hyperactivityGABAergic cellsGABAergic neuronsInterneuron maturationGlial cellsCortical astrocytesPostnatal periodAdult CNSPostnatal brainInterneuron markersInterneuronsImmunopositive interneuronsAstrocytes
2010
Fgfr2 Is Required for the Development of the Medial Prefrontal Cortex and Its Connections with Limbic Circuits
Stevens HE, Smith KM, Maragnoli ME, Fagel D, Borok E, Shanabrough M, Horvath TL, Vaccarino FM. Fgfr2 Is Required for the Development of the Medial Prefrontal Cortex and Its Connections with Limbic Circuits. Journal Of Neuroscience 2010, 30: 5590-5602. PMID: 20410112, PMCID: PMC2868832, DOI: 10.1523/jneurosci.5837-09.2010.Peer-Reviewed Original ResearchConceptsMedial prefrontal cortexCerebral cortexFibroblast growth factor receptorCKO miceExcitatory neuronsPrefrontal cortexCortical neuron developmentEntire cerebral cortexRadial glial cellsSpecific fibroblast growth factor receptorsGrowth factor receptorGABAergic neuronsLimbic circuitsCortical neuronsGlial cellsSubcortical stationsBed nucleusCortical developmentLimbic systemStria terminalisSynaptic terminalsSecondary decreaseNeuronal precursorsVentricular zoneNeuron development
2009
Precursors with Glial Fibrillary Acidic Protein Promoter Activity Transiently Generate GABA Interneurons in the Postnatal Cerebellum
Silbereis J, Cheng E, Ganat YM, Ment LR, Vaccarino FM. Precursors with Glial Fibrillary Acidic Protein Promoter Activity Transiently Generate GABA Interneurons in the Postnatal Cerebellum. Stem Cells 2009, 27: 1152-1163. PMID: 19418461, PMCID: PMC2903623, DOI: 10.1002/stem.18.Peer-Reviewed Original ResearchConceptsCerebellar white matterWhite matterGFAP/Inducible Cre recombinationMolecular layerGlial cell typesNSC/NPCsGABA interneuronsGFAP promoter activityGAD-67GABAergic interneuronsGlial cellsIntact cerebellumNeurogenic potentialCerebellar cortexCerebellar interneuronsInhibitory factorPostnatal cerebellumInterneuronsNeural stemProgenitor cellsDifferent neuronsCerebellumCerebellar developmentCre recombination
2006
Midline radial glia translocation and corpus callosum formation require FGF signaling
Smith KM, Ohkubo Y, Maragnoli ME, Rašin M, Schwartz ML, Šestan N, Vaccarino FM. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nature Neuroscience 2006, 9: 787-797. PMID: 16715082, DOI: 10.1038/nn1705.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAstrocytesCell MovementCell ShapeCerebral CortexCorpus CallosumDown-RegulationFemaleFibroblast Growth Factor 8Fibroblast Growth FactorsGrowth ConesMaleMiceMice, KnockoutMice, TransgenicNeurogliaReceptor, Fibroblast Growth Factor, Type 1Receptor, Fibroblast Growth Factor, Type 2RNA InterferenceSignal TransductionConceptsRadial glial cellsGlial cellsSomal translocationRadial gliaCorpus callosum formationReceptor 1 geneCallosal dysgenesisCerebral cortexFibroblast growth factor receptor 1 (FGFR1) geneIndusium griseumDorsomedial cortexDorsolateral cortexKnockout miceCortexAstrogliaApical endfeetFGFR1 geneAstrocytesGliaAxon guidanceDorsal midlinePrecise targetingCellsUnexpected roleFGF
2002
Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone
Ganat Y, Soni S, Chacon M, Schwartz ML, Vaccarino FM. Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone. Neuroscience 2002, 112: 977-991. PMID: 12088755, DOI: 10.1016/s0306-4522(02)00060-x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCerebral CortexCerebral VentriclesEnzyme-Linked Immunosorbent AssayEpendymaFibroblast Growth Factor 1Fibroblast Growth Factor 2HypoxiaImmunohistochemistryNeurogliaRatsReceptor Protein-Tyrosine KinasesReceptor, Fibroblast Growth Factor, Type 1Receptor, Fibroblast Growth Factor, Type 2Receptors, Fibroblast Growth FactorRegenerationUp-RegulationConceptsRadial glial cellsRadial gliaChronic hypoxiaGlial cellsFibroblast growth factor 1Periventricular regionBrain lipid binding proteinMajor receptorChronic hypoxic damageGlial fibrillary acidic proteinHypoxia/ischemiaSub-ventricular zoneImmature glial cellsFibrillary acidic proteinGrowth factor-1Ependymal zoneChronic hypoxemiaCerebral cortexHypoxic damageNeurotrophin familyPerinatal brainFGF receptor 1Rat pupsPostnatal weekGlial phenotype
1987
Coexistence of GABA receptors and GABA-modulin in primary cultures of rat cerebellar granule cells
Vaccarino FM, Alho H, Santi MR, Guidotti A. Coexistence of GABA receptors and GABA-modulin in primary cultures of rat cerebellar granule cells. Journal Of Neuroscience 1987, 7: 65-76. PMID: 3027277, PMCID: PMC6568852, DOI: 10.1523/jneurosci.07-01-00065.1987.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCarrier ProteinsCells, CulturedCerebellumFlunitrazepamFluorescent Antibody TechniqueGABA Plasma Membrane Transport ProteinsGamma-Aminobutyric AcidHistocytochemistryMembrane ProteinsMembrane Transport ProteinsMuscimolNerve Tissue ProteinsOrganic Anion TransportersRadioimmunoassayRatsReceptors, GABA-ASynaptosomesConceptsRat brain synaptosomesGranule cell culturesBrain synaptosomesGranule cellsGABA-modulinPrimary culturesCerebellar granule cell culturesRat cerebellar granule cellsPurkinje cell dendritesGranular cell layerGABA receptor complexGABA recognition siteCerebellar granule cellsGABAergic neuronsGABAergic interneuronsCell dendritesGlial cellsGABA receptorsIntact cell monolayersCell membrane preparationsCell culturesCerebellar interneuronsCell bodiesSpecific antibodiesSynaptosomes
1983
Loss of Purkinje cell‐associated benzodiazepine receptors spares a high affinity subpopulation: A study with pcd mutant mice
Vaccarino FM, Ghetti B, Wade SE, Rea MA, Aprison MH. Loss of Purkinje cell‐associated benzodiazepine receptors spares a high affinity subpopulation: A study with pcd mutant mice. Journal Of Neuroscience Research 1983, 9: 311-323. PMID: 6304330, DOI: 10.1002/jnr.490090308.Peer-Reviewed Original ResearchConceptsPopulation of receptorsBZ receptorsBenzodiazepine receptorsPurkinje cellsMutant miceHigh affinity subpopulationPcd miceGranule cell lossPurkinje cell degeneration mutant micePcd mutant miceNumber of receptorsDays of ageControl miceGlial cellsGranule cellsCell lossMicePcd mutantsReceptorsLow affinity sitesRegression analysisAgeDaysCellsSaturation data