2019
Renewal Theory as a Universal Quantitative Framework to Characterize Phase Singularity Regeneration in Mammalian Cardiac Fibrillation
Dharmaprani D, Schopp M, Kuklik P, Chapman D, Lahiri A, Dykes L, Xiong F, Aguilar M, Strauss B, Mitchell L, Pope K, Meyer C, Willems S, Akar FG, Nattel S, McGavigan AD, Ganesan AN. Renewal Theory as a Universal Quantitative Framework to Characterize Phase Singularity Regeneration in Mammalian Cardiac Fibrillation. Circulation Arrhythmia And Electrophysiology 2019, 12: e007569. PMID: 31813270, DOI: 10.1161/circep.119.007569.Peer-Reviewed Original ResearchMeSH KeywordsAction PotentialsAnimalsAtrial FibrillationBiological EvolutionComputer SimulationDisease Models, AnimalHeart Conduction SystemHeart RateHumansModels, CardiovascularMulticenter Studies as TopicObservational Studies as TopicRatsReproducibility of ResultsSheep, DomesticStochastic ProcessesTime FactorsVentricular FibrillationConceptsPoisson renewal processRenewal theoryRenewal processPhase singularityMaximum entropy theoryExponential probability distribution functionProbability distribution functionFormation/destructionConstant rate parametersEntropy theoryInterevent timesDistribution functionExponential distributionRotational eventsRecurrence quantification analysis of complex‐fractionated electrograms differentiates active and passive sites during atrial fibrillation
Baher A, Buck B, Fanarjian M, Mounsey J, Gehi A, Chung E, Akar FG, Webber CL, Akar JG, Hummel JP. Recurrence quantification analysis of complex‐fractionated electrograms differentiates active and passive sites during atrial fibrillation. Journal Of Cardiovascular Electrophysiology 2019, 30: 2229-2238. PMID: 31507008, DOI: 10.1111/jce.14161.Peer-Reviewed Original Research
2006
Bioartificial Sinus Node Constructed via In Vivo Gene Transfer of an Engineered Pacemaker HCN Channel Reduces the Dependence on Electronic Pacemaker in a Sick-Sinus Syndrome Model
Tse HF, Xue T, Lau CP, Siu CW, Wang K, Zhang QY, Tomaselli GF, Akar FG, Li RA. Bioartificial Sinus Node Constructed via In Vivo Gene Transfer of an Engineered Pacemaker HCN Channel Reduces the Dependence on Electronic Pacemaker in a Sick-Sinus Syndrome Model. Circulation 2006, 114: 1000-1011. PMID: 16923751, DOI: 10.1161/circulationaha.106.615385.Peer-Reviewed Original ResearchAnimalsArrhythmias, CardiacBioartificial OrgansCyclic Nucleotide-Gated Cation ChannelsDisease Models, AnimalElectrophysiologyGene Transfer TechniquesGuinea PigsHeart RateHyperpolarization-Activated Cyclic Nucleotide-Gated ChannelsIon ChannelsMicePacemaker, ArtificialPotassium ChannelsSick Sinus SyndromeSinoatrial NodeSwineSwine, Miniature
1999
Mechanism Linking T-Wave Alternans to the Genesis of Cardiac Fibrillation
Pastore J, Girouard S, Laurita K, Akar F, Rosenbaum D. Mechanism Linking T-Wave Alternans to the Genesis of Cardiac Fibrillation. Circulation 1999, 99: 1385-1394. PMID: 10077525, DOI: 10.1161/01.cir.99.10.1385.Peer-Reviewed Original Research