2022
A novel site on dual-specificity phosphatase MKP7/DUSP16 is required for catalysis and MAPK binding
Shillingford S, Zhang L, Surovtseva Y, Dorry S, Lolis E, Bennett AM. A novel site on dual-specificity phosphatase MKP7/DUSP16 is required for catalysis and MAPK binding. Journal Of Biological Chemistry 2022, 298: 102617. PMID: 36272649, PMCID: PMC9676401, DOI: 10.1016/j.jbc.2022.102617.Peer-Reviewed Original ResearchConceptsMitogen-activated protein kinaseP38 mitogen-activated protein kinaseMAPK bindingRegulatory mechanismsAllosteric siteMKP family membersNovel allosteric siteSmall molecule targetingMAPK/JNKAdditional regulatory mechanismsPhosphatase functionPhosphatase domainP38 MAPK/JNKProtein kinaseMKP7Site mutantsMAPK signalingAllosteric pocketMolecule targetingMAPK dephosphorylationMutantsNovel siteJNKCatalytic siteDephosphorylation
1999
Pro-1 of Macrophage Migration Inhibitory Factor Functions as a Catalytic Base in the Phenylpyruvate Tautomerase Activity † , ‡
Lubetsky J, Swope M, Dealwis C, Blake P, Lolis E. Pro-1 of Macrophage Migration Inhibitory Factor Functions as a Catalytic Base in the Phenylpyruvate Tautomerase Activity † , ‡. Biochemistry 1999, 38: 7346-7354. PMID: 10353846, DOI: 10.1021/bi990306m.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SubstitutionAnimalsBinding SitesCatalysisCrystallography, X-RayEnzyme ActivationGlycineHumansHydrogen-Ion ConcentrationIntramolecular OxidoreductasesMacromolecular SubstancesMacrophage Migration-Inhibitory FactorsMethionineMutagenesis, Site-DirectedNuclear Magnetic Resonance, BiomolecularPhenylpyruvic AcidsProlineRecombinant ProteinsConceptsMacrophage migration inhibitory factorMacrophage migration inhibitory factor (MIF) functionsAnti-inflammatory effectsMigration inhibitory factorImportant immunoregulatory moleculeTautomerase activityImmunoregulatory moleculesPhenylpyruvate tautomerase activityInhibitory factorP-hydroxyphenylpyruvateGlucocorticoidsPro-1CytokinesActivity
1998
Direct link between cytokine activity and a catalytic site for macrophage migration inhibitory factor
Swope M, Sun H, Blake P, Lolis E. Direct link between cytokine activity and a catalytic site for macrophage migration inhibitory factor. The EMBO Journal 1998, 17: 3534-3541. PMID: 9649424, PMCID: PMC1170690, DOI: 10.1093/emboj/17.13.3534.Peer-Reviewed Original ResearchConceptsN-terminal prolineN-terminal regionStructure-based inhibitorsMultiple sequence alignmentThree-dimensional structureInvariant residuesEntire polypeptideMicrobial enzymesCatalytic basePro-1Sequence alignmentMIF homologuesCytokine activityHuman macrophage migration inhibitory factorCatalytic siteProlineInhibitory factorHomologuesUnderlying biological activityP-hydroxyphenylpyruvateProteinMacrophage migration inhibitory factorActive siteBiological activity
1991
Electrophilic catalysis in triosephosphate isomerase: the role of histidine-95.
Komives E, Chang L, Lolis E, Tilton R, Petsko G, Knowles J. Electrophilic catalysis in triosephosphate isomerase: the role of histidine-95. Biochemistry 1991, 30: 3011-9. PMID: 2007138, DOI: 10.1021/bi00226a005.Peer-Reviewed Original Research
1990
Crystallographic analysis of the complex between triosephosphate isomerase and 2-phosphoglycolate at 2.5-A resolution: implications for catalysis.
Lolis E, Petsko G. Crystallographic analysis of the complex between triosephosphate isomerase and 2-phosphoglycolate at 2.5-A resolution: implications for catalysis. Biochemistry 1990, 29: 6619-25. PMID: 2204418, DOI: 10.1021/bi00480a010.Peer-Reviewed Original ResearchConceptsHydrogen bondsSide chainsGlu-165Triosephosphate isomeraseLatter hydrogen bondTransition state analogueFinal R factorEnzyme-inhibitor complexSpectroscopic resultsActive siteConformational changesCrystallographic analysisLoop movesPhosphoglycolic acidIsomeraseUnbound formCatalysisR factorBondsEnzymeComplexesStructural termsAtomic modelBindingChainTransition-State Analogues in Protein Crystallography: Probes of the Structural Source of Enzyme Catalysis
Lolis E, Petsko G. Transition-State Analogues in Protein Crystallography: Probes of the Structural Source of Enzyme Catalysis. Annual Review Of Biochemistry 1990, 59: 597-630. PMID: 2197984, DOI: 10.1146/annurev.bi.59.070190.003121.Peer-Reviewed Original Research
1987
Crystallography and site-directed mutagenesis of yeast triosephosphate isomerase: what can we learn about catalysis from a "simple" enzyme?
Alber T, Davenport R, Giammona D, Lolis E, Petsko G, Ringe D. Crystallography and site-directed mutagenesis of yeast triosephosphate isomerase: what can we learn about catalysis from a "simple" enzyme? Cold Spring Harbor Symposia On Quantitative Biology 1987, 52: 603-13. PMID: 3331346, DOI: 10.1101/sqb.1987.052.01.069.Peer-Reviewed Original Research