1994
Crystal structure of the K12M/G15A triosephosphate isomerase double mutant and electrostatic analysis of the active site.
Joseph-McCarthy D, Lolis E, Komives E, Petsko G. Crystal structure of the K12M/G15A triosephosphate isomerase double mutant and electrostatic analysis of the active site. Biochemistry 1994, 33: 2815-23. PMID: 8130194, DOI: 10.1021/bi00176a010.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceBinding SitesCrystallizationCrystallography, X-RayDNA PrimersLigandsModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedPoint MutationProtein FoldingProtein Structure, SecondaryRecombinant ProteinsSaccharomyces cerevisiaeTriose-Phosphate IsomeraseX-Ray DiffractionConceptsMutant enzymesSubstrate-binding loopActive-site LysLys-12Wild-type enzymeMet side chainsActive siteEnzyme-inhibitor complexThree-dimensional structureMutant structuresWild typeTriosephosphate isomeraseDianionic substrateEnzymeSame crystal formCrystal structureMET mutationsSide chainsIsomeraseSitesCrystal formsMutationsPhosphoglycolohydroxamateMethionine
1991
Electrophilic catalysis in triosephosphate isomerase: the role of histidine-95.
Komives E, Chang L, Lolis E, Tilton R, Petsko G, Knowles J. Electrophilic catalysis in triosephosphate isomerase: the role of histidine-95. Biochemistry 1991, 30: 3011-9. PMID: 2007138, DOI: 10.1021/bi00226a005.Peer-Reviewed Original Research
1990
Structure of yeast triosephosphate isomerase at 1.9-A resolution.
Lolis E, Alber T, Davenport R, Rose D, Hartman F, Petsko G. Structure of yeast triosephosphate isomerase at 1.9-A resolution. Biochemistry 1990, 29: 6609-18. PMID: 2204417, DOI: 10.1021/bi00480a009.Peer-Reviewed Original ResearchConceptsHydrogen bonding interactionsYeast triosephosphate isomeraseActive site structureNon-hydrogen atomsWater moleculesActive siteActive site residuesDrug designGlu-165Triosephosphate isomeraseSite structureCatalytic baseCrystal contactsSite residuesR factorTIM structuresFlexible loopLys-12Polypeptide chainStructureSubunit interfaceCarboxylateMonomersHydroxylFirst timeCrystallographic analysis of the complex between triosephosphate isomerase and 2-phosphoglycolate at 2.5-A resolution: implications for catalysis.
Lolis E, Petsko G. Crystallographic analysis of the complex between triosephosphate isomerase and 2-phosphoglycolate at 2.5-A resolution: implications for catalysis. Biochemistry 1990, 29: 6619-25. PMID: 2204418, DOI: 10.1021/bi00480a010.Peer-Reviewed Original ResearchConceptsHydrogen bondsSide chainsGlu-165Triosephosphate isomeraseLatter hydrogen bondTransition state analogueFinal R factorEnzyme-inhibitor complexSpectroscopic resultsActive siteConformational changesCrystallographic analysisLoop movesPhosphoglycolic acidIsomeraseUnbound formCatalysisR factorBondsEnzymeComplexesStructural termsAtomic modelBindingChainTransition-State Analogues in Protein Crystallography: Probes of the Structural Source of Enzyme Catalysis
Lolis E, Petsko G. Transition-State Analogues in Protein Crystallography: Probes of the Structural Source of Enzyme Catalysis. Annual Review Of Biochemistry 1990, 59: 597-630. PMID: 2197984, DOI: 10.1146/annurev.bi.59.070190.003121.Peer-Reviewed Original Research
1987
Crystallography and site-directed mutagenesis of yeast triosephosphate isomerase: what can we learn about catalysis from a "simple" enzyme?
Alber T, Davenport R, Giammona D, Lolis E, Petsko G, Ringe D. Crystallography and site-directed mutagenesis of yeast triosephosphate isomerase: what can we learn about catalysis from a "simple" enzyme? Cold Spring Harbor Symposia On Quantitative Biology 1987, 52: 603-13. PMID: 3331346, DOI: 10.1101/sqb.1987.052.01.069.Peer-Reviewed Original Research