Featured Publications
Neural effects of controllability as a key dimension of stress exposure
Cohodes EM, Odriozola P, Mandell JD, Caballero C, McCauley S, Zacharek SJ, Hodges HR, Haberman JT, Smith M, Thomas J, Meisner OC, Ellis CT, Hartley CA, Gee DG. Neural effects of controllability as a key dimension of stress exposure. Development And Psychopathology 2022, 35: 218-227. PMID: 35034670, DOI: 10.1017/s0954579421001498.Peer-Reviewed Original ResearchConceptsDorsal anterior insulaRight dorsal anterior insulaUncontrollable stress conditionUncontrollable stressStress exposureSex-matched participantsStressor controllabilityInitial exposureFunctional magnetic resonance imaging (fMRI) acquisitionSubsequent stress exposureNeural effectsAnterior insulaYoung adultsSubsequent stressorsPatterns of activityCross-species evidenceNeural correlatesSubsequent exposureExposureNeural underpinningsPresent studyParticipantsMagnetic resonance imaging (MRI) acquisitionAdaptive responseFMRI analysis
2024
Researching COVID to enhance recovery (RECOVER) pediatric study protocol: Rationale, objectives and design
Gross R, Thaweethai T, Rosenzweig E, Chan J, Chibnik L, Cicek M, Elliott A, Flaherman V, Foulkes A, Witvliet M, Gallagher R, Gennaro M, Jernigan T, Karlson E, Katz S, Kinser P, Kleinman L, Lamendola-Essel M, Milner J, Mohandas S, Mudumbi P, Newburger J, Rhee K, Salisbury A, Snowden J, Stein C, Stockwell M, Tantisira K, Thomason M, Truong D, Warburton D, Wood J, Ahmed S, Akerlundh A, Alshawabkeh A, Anderson B, Aschner J, Atz A, Aupperle R, Baker F, Balaraman V, Banerjee D, Barch D, Baskin-Sommers A, Bhuiyan, Bind M, Bogie A, Bradford T, Buchbinder N, Bueler E, Bükülmez H, Casey B, Chang L, Chrisant M, Clark D, Clifton R, Clouser K, Cottrell L, Cowan K, D’Sa V, Dapretto M, Dasgupta S, Dehority W, Dionne A, Dummer K, Elias M, Esquenazi-Karonika S, Evans D, Faustino E, Fiks A, Forsha D, Foxe J, Friedman N, Fry G, Gaur S, Gee D, Gray K, Handler S, Harahsheh A, Hasbani K, Heath A, Hebson C, Heitzeg M, Hester C, Hill S, Hobart-Porter L, Hong T, Horowitz C, Hsia D, Huentelman M, Hummel K, Irby K, Jacobus J, Jacoby V, Jone P, Kaelber D, Kasmarcak T, Kluko M, Kosut J, Laird A, Landeo-Gutierrez J, Lang S, Larson C, Lim P, Lisdahl K, McCrindle B, McCulloh R, McHugh K, Mendelsohn A, Metz T, Miller J, Mitchell E, Morgan L, Müller-Oehring E, Nahin E, Neale M, Ness-Cochinwala M, Nolan S, Oliveira C, Osakwe O, Oster M, Payne R, Portman M, Raissy H, Randall I, Rao S, Reeder H, Rosas J, Russell M, Sabati A, Sanil Y, Sato A, Schechter M, Selvarangan R, Tejtel S, Shakti D, Sharma K, Squeglia L, Srivastava S, Stevenson M, Szmuszkovicz J, Talavera-Barber M, Teufel R, Thacker D, Trachtenberg F, Udosen M, Warner M, Watson S, Werzberger A, Weyer J, Wood M, Yin H, Zempsky W, Zimmerman E, Dreyer B, Consortium O. Researching COVID to enhance recovery (RECOVER) pediatric study protocol: Rationale, objectives and design. PLOS ONE 2024, 19: e0285635. PMID: 38713673, PMCID: PMC11075869, DOI: 10.1371/journal.pone.0285635.Peer-Reviewed Original ResearchConceptsYoung adultsClinical courseAdolescent Brain Cognitive DevelopmentCaregiver-child pairsLong-term outcomesObservational cohort studyOutcomes of COVID-19De novo cohortAdolescent Brain Cognitive Development StudySociodemographic correlatesCommunity partnersBaseline assessmentLongitudinal follow-upPotential therapeutic interventionsPediatric protocolsCohort studyCollaborative partnershipsProspective cohortFollow-upStudy protocolFederal partnersNIH Researching COVIDLong-term outcomes of COVID-19Enhanced recoveryData collection
2017
Development of the emotional brain
Casey BJ, Heller AS, Gee DG, Cohen AO. Development of the emotional brain. Neuroscience Letters 2017, 693: 29-34. PMID: 29197573, PMCID: PMC5984129, DOI: 10.1016/j.neulet.2017.11.055.Peer-Reviewed Original ResearchConceptsEmotion reactivityEmotional brainCognitive control circuitryNeurobiological accountsEmotional developmentRecent imaging studiesSelf-RegulationSocial situationsNeural circuitryYoung adulthoodAdolescenceImaging studiesHierarchical changesCircuitryDynamic reorganizationSubcorticoBrainCascade of changesAdulthoodLimbicControl circuitrySituationInstantiationDevelopment
2015
Reliability of an fMRI paradigm for emotional processing in a multisite longitudinal study
Gee DG, McEwen SC, Forsyth JK, Haut KM, Bearden CE, Addington J, Goodyear B, Cadenhead KS, Mirzakhanian H, Cornblatt BA, Olvet D, Mathalon DH, McGlashan TH, Perkins DO, Belger A, Seidman LJ, Thermenos H, Tsuang MT, van Erp TG, Walker EF, Hamann S, Woods SW, Constable T, Cannon TD. Reliability of an fMRI paradigm for emotional processing in a multisite longitudinal study. Human Brain Mapping 2015, 36: 2558-2579. PMID: 25821147, PMCID: PMC4478164, DOI: 10.1002/hbm.22791.Peer-Reviewed Original ResearchConceptsFunctional magnetic resonance imaging (fMRI) taskBlood oxygen level-dependent (BOLD) signalFusiform gyrusRobust activationEmotion processing areasAnterior cingulate cortexLevel-dependent signalBrain-related changesMean activationExcellent reliabilityPatient groupRare conditionInferior frontal gyrusHealthy volunteersGeneral populationEmotion processing taskHealthy individualsCingulate cortexMultisite longitudinal studyConsecutive daysFrontal gyrusAmygdalaBrain activationMultisite studyMixed effects models
2013
A Developmental Shift from Positive to Negative Connectivity in Human Amygdala–Prefrontal Circuitry
Gee DG, Humphreys KL, Flannery J, Goff B, Telzer EH, Shapiro M, Hare TA, Bookheimer SY, Tottenham N. A Developmental Shift from Positive to Negative Connectivity in Human Amygdala–Prefrontal Circuitry. Journal Of Neuroscience 2013, 33: 4584-4593. PMID: 23467374, PMCID: PMC3670947, DOI: 10.1523/jneurosci.3446-12.2013.Peer-Reviewed Original ResearchConceptsAmygdala-prefrontal circuitryFunctional connectivityNegative connectivityAmygdala reactivityRecent human imagingParticipants 10 yearsTask-based functional magnetic resonance imagingNegative functional connectivityFunctional magnetic resonance imagingMagnetic resonance imagingAmygdala-prefrontal connectivityAmygdala-cortical connectivityAnxiety-related disordersFrontoamygdala circuitryAnimal studiesReciprocal connectionsResonance imagingTracing studyPositive connectivityAdolescent periodEarly childhoodNeurobiological basisEmotional behaviorPresent studyDevelopmental changes
2011
Altered age-related trajectories of amygdala-prefrontal circuitry in adolescents at clinical high risk for psychosis: A preliminary study
Gee DG, Karlsgodt KH, van Erp TG, Bearden CE, Lieberman MD, Belger A, Perkins DO, Olvet DM, Cornblatt BA, Constable T, Woods SW, Addington J, Cadenhead KS, McGlashan TH, Seidman LJ, Tsuang MT, Walker EF, Cannon TD, Consortium O. Altered age-related trajectories of amygdala-prefrontal circuitry in adolescents at clinical high risk for psychosis: A preliminary study. Schizophrenia Research 2011, 134: 1-9. PMID: 22056201, PMCID: PMC3245800, DOI: 10.1016/j.schres.2011.10.005.Peer-Reviewed Original ResearchConceptsClinical high riskFunctional connectivityPrefrontal cortexCHR adolescentsHigh riskAmygdala-prefrontal functional connectivityAmygdala-prefrontal circuitryCross-sectional analysisPsychophysiological interaction analysisVLPFC activationIllness onsetAge-related trajectoriesRisk syndromeVentrolateral prefrontal cortexInteraction of ageOvert psychosisAge-related variationsPsychosisAmygdala reactivityBrain connectivityFunctional activationAmygdalaCortexLater deficitsFMRI task
2010
Low frequency fluctuations reveal integrated and segregated processing among the cerebral hemispheres
Gee DG, Biswal BB, Kelly C, Stark DE, Margulies DS, Shehzad Z, Uddin LQ, Klein DF, Banich MT, Castellanos FX, Milham MP. Low frequency fluctuations reveal integrated and segregated processing among the cerebral hemispheres. NeuroImage 2010, 54: 517-527. PMID: 20570737, PMCID: PMC3134281, DOI: 10.1016/j.neuroimage.2010.05.073.Peer-Reviewed Original ResearchConceptsResting-state functional connectivityFunctional magnetic resonance imagingFunctional connectivityResting-state functional magnetic resonance imagingInterhemispheric interactionsResting-state fMRI scansSpontaneous low-frequency fluctuationsLow-frequency fluctuationsInterhemispheric processingMagnetic resonance imagingRSFC strengthCerebral hemispheresHomotopic regionsIntrahemispheric processingResonance imagingNegative connectivityEntire cerebrumConnectivity strengthFMRI scansHealthy participantsBOLD signalSegregated processingPresent studyOpposite hemisphereHemisphere