2024
Brain states as wave-like motifs
Foster M, Scheinost D. Brain states as wave-like motifs. Trends In Cognitive Sciences 2024, 28: 492-503. PMID: 38582654, DOI: 10.1016/j.tics.2024.03.004.Peer-Reviewed Original Research
2023
6. Altered Brain Dynamics Across Bipolar Disorder and Schizophrenia During Rest and Task-Switching Revealed by Overlapping Brain States
Ye J, Sun H, Gao S, Dadashkarimi J, Rosenblatt M, Rodriguez R, Mehta S, Jiang R, Noble S, Westwater M, Scheinost D. 6. Altered Brain Dynamics Across Bipolar Disorder and Schizophrenia During Rest and Task-Switching Revealed by Overlapping Brain States. Biological Psychiatry 2023, 93: s71. DOI: 10.1016/j.biopsych.2023.02.189.Peer-Reviewed Original ResearchAltered Brain Dynamics Across Bipolar Disorder and Schizophrenia During Rest and Task Switching Revealed by Overlapping Brain States
Ye J, Sun H, Gao S, Dadashkarimi J, Rosenblatt M, Rodriguez R, Mehta S, Jiang R, Noble S, Westwater M, Scheinost D. Altered Brain Dynamics Across Bipolar Disorder and Schizophrenia During Rest and Task Switching Revealed by Overlapping Brain States. Biological Psychiatry 2023, 94: 580-590. PMID: 37031780, PMCID: PMC10524212, DOI: 10.1016/j.biopsych.2023.03.024.Peer-Reviewed Original ResearchConceptsAberrant brain dynamicsMultiple brain statesBipolar disorderTask-based functional magnetic resonanceFunctional magnetic resonanceAltered brain dynamicsBrain statesTask-based functional magnetic resonance imagingFunctional magnetic resonance imagingMagnetic resonance imagingHealthy control participantsBrain dynamicsSignificant group differencesMagnetic resonanceMultivariate analysisResonance imagingSchizophreniaTime pointsControl participantsGroup differencesNeural mechanismsOlder participantsPreliminary evidenceDynamic alterationsDisorders
2019
There is no single functional atlas even for a single individual: Functional parcel definitions change with task
Salehi M, Greene AS, Karbasi A, Shen X, Scheinost D, Constable RT. There is no single functional atlas even for a single individual: Functional parcel definitions change with task. NeuroImage 2019, 208: 116366. PMID: 31740342, DOI: 10.1016/j.neuroimage.2019.116366.Peer-Reviewed Original ResearchDissociable neural substrates of opioid and cocaine use identified via connectome-based modelling
Lichenstein SD, Scheinost D, Potenza MN, Carroll KM, Yip SW. Dissociable neural substrates of opioid and cocaine use identified via connectome-based modelling. Molecular Psychiatry 2019, 26: 4383-4393. PMID: 31719641, PMCID: PMC7214212, DOI: 10.1038/s41380-019-0586-y.Peer-Reviewed Original ResearchConceptsBrain statesDissociable neural substratesMultiple brain statesSubstance use outcomesHealthy comparison subjectsWhole-brain approachFMRI scanningFrontoparietal networkNeural substratesSubstance use treatmentNeural mechanismsDifferent brain statesFurther clinical relevanceDefault modeFMRI dataSubject replicationTreatment approachesReduced connectivityUse outcomesComparison subjectsNetwork strengthUse disordersSensory networksTreatment respondersSensory connectivityMultivariate approaches improve the reliability and validity of functional connectivity and prediction of individual behaviors
Yoo K, Rosenberg MD, Noble S, Scheinost D, Constable RT, Chun MM. Multivariate approaches improve the reliability and validity of functional connectivity and prediction of individual behaviors. NeuroImage 2019, 197: 212-223. PMID: 31039408, PMCID: PMC6591084, DOI: 10.1016/j.neuroimage.2019.04.060.Peer-Reviewed Original ResearchConceptsFunctional brain organizationFunctional connectivityFunctional connectivity featuresTest-retest sampleMultivariate functional connectivityCognitive skillsMental representationsIndividual differencesFMRI measuresBrain organizationBrain statesStrong predictionSpatial activity patternsFMRI datasetsConnectivity featuresIndividual behaviorProject samplesConnectivity estimatesTimecoursesActivity patternsCognitionPearson correlationIndividualsConnectivityUnivariate approach
2018
Task-induced brain state manipulation improves prediction of individual traits
Greene AS, Gao S, Scheinost D, Constable RT. Task-induced brain state manipulation improves prediction of individual traits. Nature Communications 2018, 9: 2807. PMID: 30022026, PMCID: PMC6052101, DOI: 10.1038/s41467-018-04920-3.Peer-Reviewed Original ResearchConceptsBrain statesIndividual differencesBrain-behavior relationshipsFluid intelligence scoresTask-based functional connectivity analysisResting-state fMRI dataBrain functional organizationFunctional connectivity analysisCognitive tasksFluid intelligenceIntelligence scoresFunctional connectivityFMRI dataConnectivity analysisHuman behaviorIndividual traitsTaskCertain tasksFunctional organizationOutperform modelsSuch relationshipsCognitionState manipulationIntelligenceVarianceTime course of clinical change following neurofeedback
Rance M, Walsh C, Sukhodolsky DG, Pittman B, Qiu M, Kichuk SA, Wasylink S, Koller WN, Bloch M, Gruner P, Scheinost D, Pittenger C, Hampson M. Time course of clinical change following neurofeedback. NeuroImage 2018, 181: 807-813. PMID: 29729393, PMCID: PMC6454268, DOI: 10.1016/j.neuroimage.2018.05.001.Peer-Reviewed Original ResearchConceptsClinical changesSymptom changeTime courseBrain functionNeurofeedback studiesPotential clinical toolCrossover designControl interventionsReal neurofeedbackClinical toolTime pointsClinical populationsNeurofeedback effectsInterventionNeurofeedback sessionsNeurofeedbackCurrent brain stateWeeksBrain statesNew studiesCourseSessionsSymptoms
2017
Can brain state be manipulated to emphasize individual differences in functional connectivity?
Finn ES, Scheinost D, Finn DM, Shen X, Papademetris X, Constable RT. Can brain state be manipulated to emphasize individual differences in functional connectivity? NeuroImage 2017, 160: 140-151. PMID: 28373122, PMCID: PMC8808247, DOI: 10.1016/j.neuroimage.2017.03.064.Peer-Reviewed Original ResearchConceptsIndividual differencesFunctional connectivityBrain statesIndividual differences researchBrain functional organizationHuman Connectome ProjectDifferences researchBrain activityConnectome ProjectSubject variabilityNetworks of interestBehavioral phenotypesCertain tasksFunctional organizationDefault stateNeutral backdropOutline questionsFuture studiesConnectivityTask
2016
Fluctuations in Global Brain Activity Are Associated With Changes in Whole-Brain Connectivity of Functional Networks
Scheinost D, Tokoglu F, Shen X, Finn ES, Noble S, Papademetris X, Constable RT. Fluctuations in Global Brain Activity Are Associated With Changes in Whole-Brain Connectivity of Functional Networks. IEEE Transactions On Biomedical Engineering 2016, 63: 2540-2549. PMID: 27541328, PMCID: PMC5180443, DOI: 10.1109/tbme.2016.2600248.Peer-Reviewed Original ResearchConceptsGlobal brain activityResting-state networksWhole-brain connectivityBrain activityResting-state functional magnetic resonance imagingTime pointsFunctional resting-state networksFunctional magnetic resonance imagingMagnetic resonance imagingResting-state studyBrain statesRSN connectivitySensory functionSubcortical regionsResonance imagingCognitive functionCoactivation patternsUnique brain statesBrain connectivityActivity stateCritical time pointsFunctional networksSignal intensityVoxel-based methodBrain dynamics