1992
Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression.
Verkamp E, Jahn M, Jahn D, Kumar A, Söll D. Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression. Journal Of Biological Chemistry 1992, 267: 8275-8280. PMID: 1569081, DOI: 10.1016/s0021-9258(18)42438-6.Peer-Reviewed Original ResearchMeSH KeywordsAldehyde OxidoreductasesAmino Acid SequenceBase SequenceChromatography, GelCyanobacteriaEscherichia coliGene ExpressionGenes, BacterialGenes, FungalGenetic Complementation TestMolecular Sequence DataOpen Reading FramesPlasmidsRestriction MappingSaccharomyces cerevisiaeSequence Homology, Nucleic AcidConceptsGlutamyl-tRNA reductaseHemA geneAmino acid sequenceHemA proteinGluTR activitySynechocystis 6803Acid sequenceE. coliGlutamate-1-semialdehyde aminotransferaseHemA gene productEscherichia coliCyanobacterium Synechocystis spOpen reading frameEnterobacterium Escherichia coliDNA sequence analysisFunctional complementationGene structureGlu-tRNAGel filtration experimentsPCC 6803Synechocystis spGlutamyl-tRNAAcid polypeptideReading frameALA formation
1990
The RNA component of RNase P in Schizosaccharomyces species
Zimmerly S, Gamulin V, Burkard U, Söll D. The RNA component of RNase P in Schizosaccharomyces species. FEBS Letters 1990, 271: 189-193. PMID: 2226803, DOI: 10.1016/0014-5793(90)80403-6.Peer-Reviewed Original ResearchConceptsSchizosaccharomyces speciesS. pombeS. octosporusFission yeast SchizosaccharomycesSecondary structure modelComparative structural informationYeast SchizosaccharomycesGenes divergeRNase PRelated organismsSingle geneRNA componentNorthern analysisK RNAGenesS. japonicusSpeciesPombeOctosporusRNAStructural informationSequenceSchizosaccharomycesCopurifiesCloningYeast suppressor mutations and transfer RNA processing
Nichols M, Willis I, Söll D. Yeast suppressor mutations and transfer RNA processing. Methods In Enzymology 1990, 181: 377-394. PMID: 2199758, DOI: 10.1016/0076-6879(90)81137-j.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBlotting, NorthernChromosomes, FungalGenes, FungalIndicators and ReagentsMolecular Sequence DataMutationNucleic Acid ConformationNucleic Acid HybridizationRNA Polymerase IIIRNA Processing, Post-TranscriptionalRNA, TransferRNA, Transfer, SerSaccharomyces cerevisiaeSuppression, GeneticTranscription FactorsTranscription, GeneticConceptsTRNA genesMature-sized tRNAsRNA processing reactionsPrimer-directed mutagenesisAminoacyl-tRNA synthetaseTransfer RNA moleculesCognate aminoacyl-tRNA synthetaseRNA processingSuppressor mutationsTRNA locusElongation factorProtein biosynthesisRibosomal interactionsRNA moleculesMutant strainStructural proteinsPink coloniesTranscription efficiencyProcessing reactionsProtein synthesisSuppressor functionTRNALow template concentrationsGenesLoci
1989
A selection for mutants of the RNA polymerase III transcription apparatus: PCF1 stimulates transcription of tRNA and 5S RNA genes.
Willis I, Schmidt P, Söll D. A selection for mutants of the RNA polymerase III transcription apparatus: PCF1 stimulates transcription of tRNA and 5S RNA genes. The EMBO Journal 1989, 8: 4281-4288. PMID: 2686985, PMCID: PMC401634, DOI: 10.1002/j.1460-2075.1989.tb08614.x.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceCloning, MolecularDNA-Directed RNA PolymerasesGene ExpressionGenes, DominantGenes, FungalKineticsMolecular Sequence DataMutationOligonucleotide ProbesPlasmidsPromoter Regions, GeneticRNA Polymerase IIIRNA, RibosomalRNA, Ribosomal, 5SRNA, TransferSaccharomyces cerevisiaeSaccharomycetalesSchizosaccharomycesSelection, GeneticSuppression, GeneticTemplates, GeneticTranscription, GeneticConceptsTRNA genesMutant strainTranscription of mutantsTranscription of tRNARNA polymerase IIISuppressor tRNA geneDominant mutant geneWild-type strainStable complexesTranscription apparatusRNA genesStable complex formationUpstream geneTRNA suppressorsPositive regulatorSteady-state levelsComplex assemblyGenetic approachesPolymerase IIIGene transcriptionInternal promoterMutant geneTime-course experimentsTranscriptionGenes
1988
Genomic organization of tRNA and aminoacyl-tRNA synthetase genes for two amino acids in Saccharomyces cerevisiae
Kolman C, Snyder M, Söll D. Genomic organization of tRNA and aminoacyl-tRNA synthetase genes for two amino acids in Saccharomyces cerevisiae. Genomics 1988, 3: 201-206. PMID: 3066745, DOI: 10.1016/0888-7543(88)90080-8.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthetase genesContour-clamped homogeneous electric field gel electrophoresisHomogeneous electric field gel electrophoresisSynthetase geneGenomic organizationSmall multigene familyDNA gel blotsAmino acidsField gel electrophoresisGel electrophoresisTRNA genesChromosome assignmentMultigene familyGel blotsGene sequencesS. cerevisiaeChromosomal DNATRNAGenesSaccharomycesAspartic acidElectrophoresisGenomeCerevisiaeFamily
1987
Cloning and characterization of the gene coding for cytoplasmic seryl-tRNA synthetase from Saccharomyces cerevisiae
Weygand-Durasevic I, johnson-Burke D, Söll D. Cloning and characterization of the gene coding for cytoplasmic seryl-tRNA synthetase from Saccharomyces cerevisiae. Nucleic Acids Research 1987, 15: 1887-1904. PMID: 3031581, PMCID: PMC340606, DOI: 10.1093/nar/15.5.1887.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseSingle open reading frameAbundant yeast proteinsGenomic Southern blotsNuclease S1 analysisOpen reading frameTranslation initiation codonAmino acid sequenceKb SalI fragmentNucleotide sequence analysisAT-rich sequencesYeast proteinsStructural geneCodon usageS1 analysisTATA boxInitiation codonReading frameSer geneSalI fragmentAcid sequenceExpression librarySequence analysisRich sequencesSouthern blotSubstrate recognition and identification of splice sites by the tRNA-splicing endonuclease and ligase from Saccharomyces cerevisiae.
Greer C, Söll D, Willis I. Substrate recognition and identification of splice sites by the tRNA-splicing endonuclease and ligase from Saccharomyces cerevisiae. Molecular And Cellular Biology 1987, 7: 76-84. PMID: 3550427, PMCID: PMC365043, DOI: 10.1128/mcb.7.1.76.Peer-Reviewed Original Research
1986
Two RNA species co‐purify with RNase P from the fission yeast Schizosaccharomyces pombe.
Krupp G, Cherayil B, Frendewey D, Nishikawa S, Söll D. Two RNA species co‐purify with RNase P from the fission yeast Schizosaccharomyces pombe. The EMBO Journal 1986, 5: 1697-1703. PMID: 3743551, PMCID: PMC1166996, DOI: 10.1002/j.1460-2075.1986.tb04413.x.Peer-Reviewed Original ResearchConceptsM1 RNARNA speciesK RNASecondary structureFission yeast SchizosaccharomycesRNase P activityYeast genomic DNALimited sequence homologyYeast SchizosaccharomycesHaploid genomeSchizosaccharomyces pombeRNase PSingle copySouthern analysisSequence homologyGenomic DNAP activityRNAEscherichia coliHairpin loopSame basic organizationEnzyme activityBasic organizationInactivation experimentsSpeciesA single base change in the intron of a serine tRNA affects the rate of RNase P cleavage in vitro and suppressor activity in vivo in Saccharomyces cerevisiae.
Willis I, Frendewey D, Nichols M, Hottinger-Werlen A, Schaack J, Söll D. A single base change in the intron of a serine tRNA affects the rate of RNase P cleavage in vitro and suppressor activity in vivo in Saccharomyces cerevisiae. Journal Of Biological Chemistry 1986, 261: 5878-5885. PMID: 3516987, DOI: 10.1016/s0021-9258(17)38465-x.Peer-Reviewed Original ResearchInactivation of nonsense suppressor transfer RNA genes in Schizosaccharomyces pombe Intergenic conversion and hot spots of mutation
Heyer W, Münz P, Amstutz H, Aebi R, Gysler C, Schuchert P, Szankasi P, Leupold U, Kohli J, Gamulin V, Söll D. Inactivation of nonsense suppressor transfer RNA genes in Schizosaccharomyces pombe Intergenic conversion and hot spots of mutation. Journal Of Molecular Biology 1986, 188: 343-353. PMID: 3735426, DOI: 10.1016/0022-2836(86)90159-2.Peer-Reviewed Original ResearchConceptsTRNA genesSuppressor tRNA geneIntergenic conversionDNA sequencesTransfer RNA genesYeast Schizosaccharomyces pombeSerine tRNA geneCrosses of strainsSame molecular mechanismsConcerted evolutionRNA genesProgeny sporesSchizosaccharomyces pombeAllelic conversionDifferent chromosomesConversion eventsIntron sequencesSequence transferMolecular mechanismsMutation hot spotsSpontaneous mutationsVegetative cellsGenesPoint mutationsSuppressor activity
1985
Dimeric tRNA gene arrangement in Schizosaccharomyces pombe allows increased expression of the downstream gene
Hottinger-Werlen A, Schaack J, Lapointe J, Mao J, Nichols M, Söll D. Dimeric tRNA gene arrangement in Schizosaccharomyces pombe allows increased expression of the downstream gene. Nucleic Acids Research 1985, 13: 8739-8747. PMID: 3936021, PMCID: PMC318948, DOI: 10.1093/nar/13.24.8739.Peer-Reviewed Original ResearchConceptsTRNASer geneS. pombe genesDimeric arrangementPombe geneTRNA genesGene arrangementSchizosaccharomyces pombeSpecies genesMinor genesTranscription factorsDownstream genesTranscriptional efficiencyCompetitive abilityGenesMinor speciesMajor speciesSpeciesDimeric structureEfficient productionExpressionSchizosaccharomycesPombeTRNASerSaccharomycesSequenceFirst identification of an amber nonsense mutation in Schizosaccharomyces pombe: major differences in the efficiency of homologous versus heterologous yeast suppressor tRNA genes
Krupp G, Thuriaux P, Willis I, Gamulin V, Söll D. First identification of an amber nonsense mutation in Schizosaccharomyces pombe: major differences in the efficiency of homologous versus heterologous yeast suppressor tRNA genes. Molecular Genetics And Genomics 1985, 201: 82-87. PMID: 3903436, DOI: 10.1007/bf00397990.Peer-Reviewed Original ResearchConceptsS. pombeAmber allelesAmber suppressor allelesFission yeast SchizosaccharomycesS. pombe transformantsAmber suppressor tRNANonsense mutationAmber nonsense mutationsSuppressor tRNA geneTRNA genesFission yeastYeast SchizosaccharomycesSchizosaccharomyces pombeSuppressor allelesTRP1 locusAmber mutationSuppressor tRNAPombeNonsense allelesNorthern analysisNitrosoguanidine mutagenesisOchre alleleGenesFirst identificationTRNASerMutations preventing expression of sup3 tRNASer nonsense suppressors of Schizosaccharomyces pombe.
Pearson D, Willis I, Hottinger H, Bell J, Kumar A, Leupold U, Söll D. Mutations preventing expression of sup3 tRNASer nonsense suppressors of Schizosaccharomyces pombe. Molecular And Cellular Biology 1985, 5: 808-815. PMID: 3921825, PMCID: PMC366785, DOI: 10.1128/mcb.5.4.808.Peer-Reviewed Original ResearchConceptsTRNA genesSchizosaccharomyces pombeGenomic clone bankEucaryotic tRNA genesTranscription control regionsIdentification of mutationsClone bankTRNA precursorsControl regionNonsense codonGenetic evidenceNonsense suppressorsRevertant allelesTranscriptional efficiencySaccharomyces cerevisiae extractSequence analysisSuppressor locusColony hybridizationMutational hotspotsPoint mutationsCerevisiae extractGenesPombeMutationsSplicing
1984
The sup8 tRNALeu gene of Schizosaccharomyces pombe has an unusual intervening sequence and reduced pairing in the anticodon stem
Sumner-Smith M, Hottinger H, Willis I, Koch T, Arentzen R, Söll D. The sup8 tRNALeu gene of Schizosaccharomyces pombe has an unusual intervening sequence and reduced pairing in the anticodon stem. Molecular Genetics And Genomics 1984, 197: 447-452. PMID: 6597338, DOI: 10.1007/bf00329941.Peer-Reviewed Original ResearchConceptsTRNA genesS. pombe DNAWild-type alleleAnticodon UCASplicing endonucleaseSuppressor allelesSchizosaccharomyces pombeTRNALeu geneUUA codonTrailer sequencesIntervening sequenceCell-free extractsAnticodon stemRelated sequencesSplice siteBase pairsSecondary structureGenesIsoacceptorsAllelesSequenceStructural requirementsPombeAnticodonSup8The Schizosaccharomyces pombe sup3‐i suppressor recognizes ochre, but not amber codons in vitro and in vivo.
Hottinger H, Stadelmann B, Pearson D, Frendewey D, Kohli J, Söll D. The Schizosaccharomyces pombe sup3‐i suppressor recognizes ochre, but not amber codons in vitro and in vivo. The EMBO Journal 1984, 3: 423-428. PMID: 6370683, PMCID: PMC557361, DOI: 10.1002/j.1460-2075.1984.tb01823.x.Peer-Reviewed Original ResearchConceptsFission yeast Schizosaccharomyces pombeYeast Schizosaccharomyces pombeUGA termination codonVitro translation assaysReadthrough productS. pombeSchizosaccharomyces pombeNonsense mutantsTermination signalOchre suppressorUGA suppressionTranslation assaysAmber codonTermination codonGlobin mRNASup3PombeT substitutionCodonSuppressorPlasmid DNASchizosaccharomycesMutantsVivoAnticodon
1983
Six Schizosaccharomyces pombe tRNA genes including a gene for a tRNA Lys with an intervening sequence which cannot base-pair with the anticodon
Gamulin V, Mao J, Appel B, Sumner-Smith M, Yamao F, Söll D. Six Schizosaccharomyces pombe tRNA genes including a gene for a tRNA Lys with an intervening sequence which cannot base-pair with the anticodon. Nucleic Acids Research 1983, 11: 8537-8546. PMID: 6561518, PMCID: PMC326605, DOI: 10.1093/nar/11.24.8537.Peer-Reviewed Original Research