2024
Engineered mRNA–ribosome fusions for facile biosynthesis of selenoproteins
Thaenert A, Sevostyanova A, Chung C, Vargas-Rodriguez O, Melnikov S, Söll D. Engineered mRNA–ribosome fusions for facile biosynthesis of selenoproteins. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2321700121. PMID: 38442159, PMCID: PMC10945757, DOI: 10.1073/pnas.2321700121.Peer-Reviewed Original ResearchMeSH KeywordsCodon, TerminatorEscherichia coliMagnoliopsidaRibosomesRNA, MessengerRNA, Ribosomal, 16SSelenocysteineSelenoproteinsConceptsSelenocysteine insertion sequenceRibosomal RNARibosome engineeringMessenger RNARegulatory RNA elementsMachinery of protein synthesisInsertion of SecSec-containing proteinsSite-specific insertionBiosynthesis of selenoproteinsNatural messenger RNALive bacterial cellsRNA elementsUAG codonInsertion sequenceRibosome structureUGA codonSec codonInsert SecStop codonSynthetic biologyDesigning proteinsRibosomePolypeptide chainBacterial cells
2023
Mistranslation of the genetic code by a new family of bacterial transfer RNAs
Schuntermann D, Fischer J, Bile J, Gaier S, Shelley B, Awawdeh A, Jahn M, Hoffman K, Westhof E, Söll D, Clarke C, Vargas-Rodriguez O. Mistranslation of the genetic code by a new family of bacterial transfer RNAs. Journal Of Biological Chemistry 2023, 299: 104852. PMID: 37224963, PMCID: PMC10404621, DOI: 10.1016/j.jbc.2023.104852.Peer-Reviewed Original ResearchConceptsTransfer RNAsAmino acidsBacterial transfer RNAsUnfavorable environmental conditionsProlyl-tRNA synthetaseWrong amino acidPoor substrate specificitySubstrate discriminationGrowth defectTransfer RNAGenetic codePosttranslational modificationsProtein reporterTranslation factorsEnvironmental stressFunctional proteinsSubstrate specificityThreonine codonGenetic informationDistinct isoformsPro mutationAntibiotic carbenicillinEscherichia coliNovel familyEnvironmental conditionsSplit aminoacyl-tRNA synthetases for proximity-induced stop codon suppression
Jiang H, Ambrose N, Chung C, Wang Y, Söll D, Tharp J. Split aminoacyl-tRNA synthetases for proximity-induced stop codon suppression. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2219758120. PMID: 36787361, PMCID: PMC9974479, DOI: 10.1073/pnas.2219758120.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesCodon, TerminatorEscherichia coliHumansLigasesProtein BiosynthesisRNA, TransferConceptsAminoacyl-tRNA synthetasesCodon suppressionStop codon suppressionGene expressionOrthogonal aminoacyl-tRNA synthetasesRelevant protein-protein interactionsSynthetic biology toolsSmall molecule rapamycinControl gene expressionProtein-protein interactionsLevel of transcriptionAbscisic acidDimerization domainMammalian cellsBiology toolsGene translationTranslational levelMolecular switchStop codonHuman cellsMolecular inputsUseful biotechnologySynthetasesExpressionTherapeutic applications
2022
Measuring the tolerance of the genetic code to altered codon size
DeBenedictis EA, Söll D, Esvelt KM. Measuring the tolerance of the genetic code to altered codon size. ELife 2022, 11: e76941. PMID: 35293861, PMCID: PMC9094753, DOI: 10.7554/elife.76941.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesAnticodonCodonEscherichia coliGenetic CodeProtein BiosynthesisRNA, TransferConceptsFour-base codonsGenetic codeTRNA mutationsAminoacyl-tRNA synthetasesQuadruplet codonsSingle amino acidCodon translationTriplet codonsTRNA synthetasesSynthetic biologistsCodonTRNAAmino acidsChemical alphabetsMutationsMass spectrometrySynthetasesAnticodonToleranceSynthetic systemsBiologistsTranslationEscherichiaNascent
2014
Exploring the Substrate Range of Wild‐Type Aminoacyl‐tRNA Synthetases
Fan C, Ho JM, Chirathivat N, Söll D, Wang Y. Exploring the Substrate Range of Wild‐Type Aminoacyl‐tRNA Synthetases. ChemBioChem 2014, 15: 1805-1809. PMID: 24890918, PMCID: PMC4133344, DOI: 10.1002/cbic.201402083.Peer-Reviewed Original ResearchMeSH KeywordsAmino AcidsAmino Acyl-tRNA SynthetasesAnticodonEscherichia coliMolecular ConformationSubstrate SpecificityConceptsAminoacyl-tRNA synthetasesSubstrate rangeDifferent amino acid sitesAmino acidsE. coli tryptophanyl-tRNA synthetaseE. coli aminoacyl-tRNA synthetasesAmino acid sitesCanonical amino acidsNonstandard amino acidsTyrosyl-tRNA synthetaseTryptophanyl-tRNA synthetaseAnticodon sequenceTRNA synthetasesSynthetasesSynthetaseSequenceAnticodonNSAAsTrpRSProteinAminoacylAcid
2012
Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment
Ling J, Peterson KM, Simonović I, Cho C, Söll D, Simonović M. Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 3281-3286. PMID: 22343532, PMCID: PMC3295322, DOI: 10.1073/pnas.1200109109.Peer-Reviewed Original ResearchMeSH KeywordsAeropyrumAmino Acid SequenceAnticodonCatalytic DomainCodonCrystallography, X-RayEscherichia coliEvolution, MolecularLeucineMitochondriaModels, MolecularMolecular Sequence DataProtein ConformationProtein Structure, TertiaryRNA EditingRNA, Transfer, Amino AcylSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence AlignmentSpecies SpecificityStaphylococcus aureusSubstrate SpecificityThreonineThreonine-tRNA LigaseConceptsThreonyl-tRNA synthetaseAnticodon loopAnticodon sequenceEscherichia coli ThrRSSet of tRNAsDistinct recognition mechanismsAnticodon-binding domainAminoacyl-tRNA synthetasesCUN codonsDetailed structural comparisonCodon reassignmentYeast mitochondriaGenetic codeTRNA isoacceptorsSaccharomyces cerevisiaeIsoacceptor tRNAsEditing domainTRNAMST1Anticodon tripletStructural comparisonNatural tRNAAmino acidsDistinct mechanismsRecognition mechanism
2011
Rational design of an evolutionary precursor of glutaminyl-tRNA synthetase
O’Donoghue P, Sheppard K, Nureki O, Söll D. Rational design of an evolutionary precursor of glutaminyl-tRNA synthetase. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 20485-20490. PMID: 22158897, PMCID: PMC3251134, DOI: 10.1073/pnas.1117294108.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acyl-tRNA SynthetasesBase SequenceCodonEscherichia coliEvolution, MolecularGenetic EngineeringKineticsMethanobacteriaceaeModels, MolecularMolecular ConformationMolecular Sequence DataNucleic Acid ConformationPhylogenyProtein Structure, SecondarySequence Homology, Amino AcidConceptsGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesGenetic code engineeringAmino acidsDomains of lifeMost aminoacyl-tRNA synthetasesGlutamyl-tRNA synthetaseCanonical amino acidsBacterial GlnRSTRNA specificityTRNA pairsParticular codonsEvolutionary precursorBiochemical characterizationStem loopGlnRAdditional codonsCAA codonCodonProtein synthesisCAG codonEscherichia coliSpecific enzymesCatalytic preferenceSynthetase
2008
Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality
Nozawa K, O’Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O. Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality. Nature 2008, 457: 1163-1167. PMID: 19118381, PMCID: PMC2648862, DOI: 10.1038/nature07611.Peer-Reviewed Original ResearchConceptsAmino acidsMolecular basisLast universal common ancestorUniversal common ancestorUAG stop codonProteinogenic amino acidsCommon ancestorSuppressor tRNAStop codonDesulfitobacterium hafnienseStandard amino acidsTRNADistinct interactionsProteinPyrrolysinePylRSSelenocysteineAncestorCodonMachineryAcidVivoPairsQuality control despite mistranslation caused by an ambiguous genetic code
Ruan B, Palioura S, Sabina J, Marvin-Guy L, Kochhar S, LaRossa RA, Söll D. Quality control despite mistranslation caused by an ambiguous genetic code. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 16502-16507. PMID: 18946032, PMCID: PMC2575449, DOI: 10.1073/pnas.0809179105.Peer-Reviewed Original ResearchMeSH KeywordsEscherichia coliGenetic CodeHeat-Shock ResponseMass SpectrometryMutation, MissenseProtein BiosynthesisRNA, Transfer, Amino AcylConceptsGenetic codeAa-tRNAWild-type proteinAminoacyl-tRNA synthetasesInactive mutant proteinsHeat shock responseE. coliMutant proteinsReporter proteinMissense suppressionFunctional proteinsCognate tRNASelective pressureAminoacyl-tRNAActive enzymeShock responseProtein synthesisNative conformationEnergetic costAmino acidsMissense mutationsProteinBiochemical evidenceCorrect pairingProtein quality
2004
The unusual methanogenic seryl‐tRNA synthetase recognizes tRNASer species from all three kingdoms of life
Bilokapic S, Korencic D, Söll D, Weygand‐Durasevic I. The unusual methanogenic seryl‐tRNA synthetase recognizes tRNASer species from all three kingdoms of life. The FEBS Journal 2004, 271: 694-702. PMID: 14764085, DOI: 10.1111/j.1432-1033.2003.03971.x.Peer-Reviewed Original ResearchMeSH KeywordsAnticodonBase SequenceChromatography, GelDimerizationElectrophoretic Mobility Shift AssayEscherichia coliIsoelectric FocusingMethanococcusMolecular Sequence DataNucleic Acid ConformationProtein BindingRNA, Transfer, Amino AcylRNA, Transfer, SerSerineSerine-tRNA LigaseSubstrate SpecificityTranscription, GeneticYeastsConceptsSeryl-tRNA synthetaseGel mobility shift assaysKingdoms of lifeMobility shift assaysMethanococcus jannaschiiM. maripaludisTRNA recognitionShift assaysTRNARenaturation conditionsGel filtration chromatographyConformation of tRNAComplex formationSpeciesFiltration chromatographySynthetaseDimerizationSerRSsJannaschiiTRNASerIsoacceptorsHomologuesComplementary oligonucleotidesAminoacylationRenaturation
2002
tRNA‐dependent amino acid discrimination by yeast seryl‐tRNA synthetase
Gruic‐Sovulj I, Landeka I, Söll D, Weygand‐Durasevic I. tRNA‐dependent amino acid discrimination by yeast seryl‐tRNA synthetase. The FEBS Journal 2002, 269: 5271-5279. PMID: 12392560, DOI: 10.1046/j.1432-1033.2002.03241.x.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast seryl-tRNA synthetaseCognate tRNA moleculesAmino acid discriminationAminoacyl-tRNA synthetasesAmino acid substratesSimilar amino acidsAmino acid serineGenetic codeEnzyme active siteTRNA moleculesActive siteYeast SerRSConformational changesAcid substratesAmino acidsSerineSynthetaseStoichiometric analysisDifferent affinitiesEnzymeAccurate translationTRNASerSynthetasesSaccharomyces
2001
A dual‐specific Glu‐tRNAGln and Asp‐tRNAAsn amidotransferase is involved in decoding glutamine and asparagine codons in Acidithiobacillus ferrooxidans
Salazar J, Zúñiga R, Raczniak G, Becker H, Söll D, Orellana O. A dual‐specific Glu‐tRNAGln and Asp‐tRNAAsn amidotransferase is involved in decoding glutamine and asparagine codons in Acidithiobacillus ferrooxidans. FEBS Letters 2001, 500: 129-131. PMID: 11445070, DOI: 10.1016/s0014-5793(01)02600-x.Peer-Reviewed Original ResearchConceptsOperon-like structureGlutaminyl-tRNA synthetaseGlutamyl-tRNA synthetaseA. ferrooxidansAsparaginyl-tRNA synthetaseTransamidation pathwayGat genesGlu-tRNAGlnBioleaching of mineralsAsn-tRNAAcidithiobacillus ferrooxidansGln-tRNAAsparagine codonsSynthetase enzymeBacillus subtilisAcidophilic bacteriumEscherichia coliBiochemical analysisAmidotransferaseSynthetaseGenesProtein synthesis: Twenty three amino acids and counting
Ibba M, Stathopoulos C, Söll D. Protein synthesis: Twenty three amino acids and counting. Current Biology 2001, 11: r563-r565. PMID: 11509255, DOI: 10.1016/s0960-9822(01)00344-x.Peer-Reviewed Original ResearchConserved amino acids near the carboxy terminus of bacterial tyrosyl‐tRNA synthetase are involved in tRNA and Tyr‐AMP binding
Salazar J, Zuñiga R, Lefimil C, Söll D, Orellana O. Conserved amino acids near the carboxy terminus of bacterial tyrosyl‐tRNA synthetase are involved in tRNA and Tyr‐AMP binding. FEBS Letters 2001, 491: 257-260. PMID: 11240138, DOI: 10.1016/s0014-5793(01)02214-1.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine MonophosphateBacterial ProteinsCloning, MolecularConserved SequenceDimerizationEscherichia coliGammaproteobacteriaGene ExpressionGenetic Complementation TestGeobacillus stearothermophilusMutagenesis, Site-DirectedRNA, TransferSequence Homology, Amino AcidStructure-Activity RelationshipTyrosineTyrosine-tRNA LigaseConceptsBacterial tyrosyl-tRNA synthetasesBacterial tyrosyl tRNA synthetaseConserved amino acidsAmino acidsAmino acid identityAmino-terminal regionActive site domainCarboxy-terminal segmentTyrosyl-tRNA synthetasesTyrosyl-tRNA synthetaseAcid identityLargest subfamilyCarboxy terminusSite domainTRNA bindingEnzyme functionTyr-AMPTRNATyrRSResiduesEquivalent roleBindingH306S356K395
2000
A Mutant Escherichia coli Tyrosyl-tRNA Synthetase Utilizes the Unnatural Amino Acid Azatyrosine More Efficiently than Tyrosine*
Hamano-Takaku F, Iwama T, Saito-Yano S, Takaku K, Monden Y, Kitabatake M, Söll D, Nishimura S. A Mutant Escherichia coli Tyrosyl-tRNA Synthetase Utilizes the Unnatural Amino Acid Azatyrosine More Efficiently than Tyrosine*. Journal Of Biological Chemistry 2000, 275: 40324-40328. PMID: 11006270, DOI: 10.1074/jbc.m003696200.Peer-Reviewed Original ResearchConceptsUnnatural amino acidsTyrosyl-tRNA synthetaseEscherichia coli tyrosyl-tRNA synthetasePosition 130Amino acidsVivo protein biosynthesisE. coli cellsAminoacyl-tRNA formationSingle point mutationTyrRS mutantsCellular proteinsProtein biosynthesisTYR geneMutant enzymesPlasmid libraryReplacement of phenylalanineColi cellsImmense potentialNormal phenotypeEfficient productionPoint mutationsTyrRSProteinPolymerase chain reaction techniqueSynthetaseA dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia
Bunjun S, Stathopoulos C, Graham D, Min B, Kitabatake M, Wang A, Wang C, Vivarès C, Weiss L, Söll D. A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 12997-13002. PMID: 11078517, PMCID: PMC27167, DOI: 10.1073/pnas.230444397.Peer-Reviewed Original ResearchConceptsCys-tRNAAminoacyl-tRNA synthetaseProlyl-tRNA synthetasePrimitive eukaryote Giardia lambliaPro geneEukaryote Giardia lambliaNumber of archaeaAlanyl-tRNA synthetasesCysteinyl-tRNA synthetaseE. coli tRNACysS genesM. jannaschiiMethanococcus jannaschiiMost organismsGenomic sequencesSaccharomyces cerevisiaeCysteinyl-tRNAGene productsPro-tRNATRNA synthetaseDual specificityMethanobacterium thermoautotrophicumProtein synthesisEscherichia coliAmino acidsDomain-specific recruitment of amide amino acids for protein synthesis
Tumbula D, Becker H, Chang W, Söll D. Domain-specific recruitment of amide amino acids for protein synthesis. Nature 2000, 407: 106-110. PMID: 10993083, DOI: 10.1038/35024120.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseAsparaginyl-tRNA synthetaseProtein synthesisAmino acidsAminoacyl-transfer RNAAmino acid metabolismGlu-tRNAGlnAsn-tRNAProtein biosynthesisGln-tRNAArchaeaTRNASynthetaseAmidotransferaseBacteriaAmidotransferasesDirect evidenceDifferent mechanismsBiosynthesisCentral importanceCrucial stepRNAOrganismsDomainCytoplasmThe heterotrimeric Thermus thermophilus Asp‐tRNAAsn amidotransferase can also generate Gln‐tRNAGln
Becker H, Min B, Jacobi C, Raczniak G, Pelaschier J, Roy H, Klein S, Kern D, Söll D. The heterotrimeric Thermus thermophilus Asp‐tRNAAsn amidotransferase can also generate Gln‐tRNAGln. FEBS Letters 2000, 476: 140-144. PMID: 10913601, DOI: 10.1016/s0014-5793(00)01697-5.Peer-Reviewed Original ResearchTransfer RNA Identity Change in Anticodon Variants of E. coli tRNAPhe in Vivo
Kim H, Kim I, Söll D, Lee Y. Transfer RNA Identity Change in Anticodon Variants of E. coli tRNAPhe in Vivo. Molecules And Cells 2000, 10: 76-82. PMID: 10774751, DOI: 10.1007/s10059-000-0076-7.Peer-Reviewed Original ResearchConceptsMutant tRNA genesMutant tRNAsTRNA genesAnticodon sequenceAnticodon mutantsHost viabilityE. coliAmino acidsMost aminoacyl-tRNA synthetasesOpal stop codonAminoacyl-tRNA synthetasesSite-directed mutagenesisE. coli tRNAMajor recognition elementAnticodon variantsSuch tRNAsTRNAStop codonAminoacylation specificityAnticodonSimilarity dendrogramVivo evolutionGenesAcceptor specificityAnticodon changeOne Polypeptide with Two Aminoacyl-tRNA Synthetase Activities
Stathopoulos C, Li T, Longman R, Vothknecht U, Becker H, Ibba M, Söll D. One Polypeptide with Two Aminoacyl-tRNA Synthetase Activities. Science 2000, 287: 479-482. PMID: 10642548, DOI: 10.1126/science.287.5452.479.Peer-Reviewed Original ResearchConceptsProlyl-tRNA synthetaseProtein synthesisCysteinyl-tRNA synthetase activityAmino-terminal sequenceSynthetase activityAminoacyl-tRNA synthetase activityCertain archaeaEvolutionary originMethanococcus jannaschiiGenome sequenceSubstrate specificityGenetic analysisSuch organismsMessenger RNARNA synthetasesSynthetaseSequenceArchaeaJannaschiiSynthetasesRNAOrganismsPolypeptideProlylProtein